Skip to main content

Numerical Studies of the Lagrangian Approach for Reconstruction of the Conductivity in a Waveguide

  • Conference paper
  • First Online:
Nonlinear and Inverse Problems in Electromagnetics (PIERS 2017, PIERS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 243))

  • 457 Accesses

Abstract

We consider an inverse problem of reconstructing the conductivity function in a hyperbolic equation using single space-time domain noisy observations of the solution on the backscattering boundary of the computational domain. We formulate our inverse problem as an optimization problem and use Lagrangian approach to minimize the corresponding Tikhonov functional. We present a theorem of a local strong convexity of our functional and derive error estimates between computed and regularized as well as exact solutions of this functional, correspondingly. In numerical simulations we apply domain decomposition finite element-finite difference method for minimization of the Lagrangian. Our computational study shows efficiency of the proposed method in the reconstruction of the conductivity function in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.B. Bakushinsky, M.Y. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems (Springer, 2004)

    Google Scholar 

  2. A. Bakushinsky, M.Y. Kokurin, A. Smirnova, Iterative Methods for Ill-posed Problems, vol. 54, Inverse and Ill-Posed Problems Series (De Gruyter, 2011)

    Google Scholar 

  3. L. Beilina, Domain Decomposition finite element/finite difference method for the conductivity reconstruction in a hyperbolic equation. Commun Nonlinear Sci Numer Simul. Elsevier (2016). https://doi.org/10.1016/j.cnsns.2016.01.016

  4. L. Beilina, K. Samuelsson, K. Åhlander, Efficiency of a hybrid method for the wave equation, in Proceedings of the International Conference on Finite Element Methods: Three dimensional problems. GAKUTO International Series, Mathematical Sciences and Applications, 15 (2001)

    Google Scholar 

  5. L. Beilina, C. Johnson, A posteriori error estimation in computational inverse scattering. Math Models Appl Sci 1, 23–35 (2005)

    Article  MathSciNet  Google Scholar 

  6. L. Beilina, M.V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New-York, 2012)

    Book  Google Scholar 

  7. L. Beilina, M.V. Klibanov, MYu. Kokurin, Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem. J Math Sci 167, 279–325 (2010)

    Article  MathSciNet  Google Scholar 

  8. L. Beilina, N.T. Thành, M.V. Klibanov, J. Bondestam-Malmberg, Reconstruction of shapes and refractive indices from blind backscattering experimental data using the adaptivity. Inverse Probl. 30, 105007 (2014)

    Article  Google Scholar 

  9. L. Beilina, M. Cristofol, K. Niinimäki, Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Probl Imaging 9(1), 1–25 (2015)

    Article  MathSciNet  Google Scholar 

  10. C. Bellis, M. Bonnet, B.B. Guzina, Apposition of the topological sensitivity and linear sampling approaches to inverse scattering. Wave Motion 50, 891–908 (2013)

    Article  MathSciNet  Google Scholar 

  11. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods (Springer, Berlin, 1994)

    Book  Google Scholar 

  12. H.D. Bui, A. Constantinescu, H. Maigre, Numerical identification of planar cracks in elastodynamics using the instantaneous reciprocity gap. Inverse Probl 20, 993–1001 (2004)

    Article  Google Scholar 

  13. H.D. Bui, A. Constantinescu, H. Maigre, An exact inversion formula for determining a planar fault from boundary measurements. J Inverse Ill Posed Probl 13, 553–565 (2005)

    Article  MathSciNet  Google Scholar 

  14. Y.T. Chow, J. Zou, A numerical method for reconstructing the coefficient in a wave equation. Numer Methods Partial Differ Equ 31, 289–307 (2015)

    Article  MathSciNet  Google Scholar 

  15. G.C. Cohen, Higher Order Numerical Methods for Transient Wave Equations (Springer, 2002)

    Book  Google Scholar 

  16. R. Courant, K. Friedrichs, H. Lewy, On the partial differential equations of mathematical physics. IBM J Res Dev 11(2), 215–234 (1967)

    Google Scholar 

  17. M. Cristofol, S. Li, E. Soccorsi, Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary. Math Control Relat Fields 6(3), 407–427 (2016)

    Article  MathSciNet  Google Scholar 

  18. H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Kluwer Academic Publishers, Boston, 2000)

    Chapter  Google Scholar 

  19. B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31, 629–651 (1977)

    Article  MathSciNet  Google Scholar 

  20. S.N. Fata, B.B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics. Inverse Probl 20, 713–736 (2004)

    Article  MathSciNet  Google Scholar 

  21. M.V. Klibanov, A.B. Bakushinsky, L. Beilina, Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess. J Inverse Ill Posed Probl 19(1), 83–105 (2011)

    Article  MathSciNet  Google Scholar 

  22. O.A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics (Springer, Berlin, 1985)

    Book  Google Scholar 

  23. PETSc, Portable, Extensible Toolkit for Scientific Computation. http://www.mcs.anl.gov/petsc/

  24. O. Pironneau, Optimal Shape Design for Elliptic Systems (Springer, Berlin, 1984)

    Book  Google Scholar 

  25. A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, London, 1995)

    Chapter  Google Scholar 

  26. WavES, the software package. http://www.waves24.com

Download references

Acknowledgements

The research of L. B. is partially supported by the sabbatical programme at the Faculty of Science, University of Gothenburg, Sweden, and the research of K. N. was supported by the Swedish Foundation for Strategic Research. The computations were performed on resources at Chalmers Centre for Computational Science and Engineering (C3SE) provided by the Swedish National Infrastructure for Computing (SNIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beilina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beilina, L., Niinimäki, K. (2018). Numerical Studies of the Lagrangian Approach for Reconstruction of the Conductivity in a Waveguide. In: Beilina, L., Smirnov, Y. (eds) Nonlinear and Inverse Problems in Electromagnetics. PIERS PIERS 2017 2017. Springer Proceedings in Mathematics & Statistics, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-319-94060-1_8

Download citation

Publish with us

Policies and ethics