Advertisement

Classification Methods in Image Analysis with a Special Focus on Medical Analytics

  • Lucio AmelioEmail author
  • Alessia Amelio
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 149)

Abstract

This paper describes the design and application of classification methods for image analysis and processing. Accordingly, the main trends and challenges of the machine learning are presented in multiple contexts where the image analysis plays a very important role, including security and biometrics, aerospace and satellite monitoring, document analysis, natural language understanding, and information retrieval. This is accomplished by introducing a categorisation of the most challenging classification methods according to the thematic context and classification typology. Hence, supervised and unsupervised classification methods are presented and discussed. It is followed by a special focus on the medical context, where the classification methods for image analysis are of prior importance in supporting the medical diagnosis process. Accordingly, the second part of the paper surveys the recent and current research in medical analytics where the image classification is a key aspect, and tracks the horizon of the research for future challenges in the field.

Keywords

Classification Clustering Image analysis Medical analytics Pattern recognition 

References

  1. 1.
    Abbes, W., Sellami, D.: Automatic skin lesions classification using ontology-based semantic analysis of optical standard images. Procedia Comput. Sci. 112, 2096–2105 (2017). In: Proceedings of the 21st International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, KES-2017, 6–8 September 2017, Marseille, FranceGoogle Scholar
  2. 2.
    Adámek, M., Matýsek, M., Neumann, P.: Security of biometric systems. Procedia Eng. 100(Suppl C), 169–176 (2015). In: 25th DAAAM International Symposium on Intelligent Manufacturing and Automation (2014)Google Scholar
  3. 3.
    Aggarwal, C., Reddy, C.: Data Clustering: Algorithms and Applications. Data Mining and Knowledge Discovery Series. CRC Press, Chapman & Hall/CRC (2016)Google Scholar
  4. 4.
    Ahmad, F., Mohamad, D.: A review on fingerprint classification techniques. In: 2009 International Conference on Computer Technology and Development, vol. 2, pp. 411–415, November 2009Google Scholar
  5. 5.
    Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 30(4), 449–459 (2017)CrossRefGoogle Scholar
  6. 6.
    Ali, H., Salami, M.J.E., Wahyudi: Iris recognition system by using support vector machines. In: 2008 International Conference on Computer and Communication Engineering, pp. 516–521, May 2008Google Scholar
  7. 7.
    Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)MathSciNetGoogle Scholar
  8. 8.
    Amelio, A., Pizzuti, C.: An evolutionary and graph-based method for image segmentation. In: 12th International Conference on Parallel Problem Solving from Nature—PPSN XII Taormina, Italy, 1–5 September 2012, Proceedings, Part I, pp. 143–152. Springer, Berlin, Heidelberg (2012)Google Scholar
  9. 9.
    Amelio, A., Pizzuti, C.: A genetic algorithm for color image segmentation. In: 16th European Conference on Applications of Evolutionary Computation, EvoApplications 2013, Vienna, Austria, 3–5 April 2013, Proceedings, pp. 314–323. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Amelio, A., Pizzuti, C.: Skin lesion image segmentation using a color genetic algorithm. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’13 Companion, pp. 1471–1478. ACM, New York, NY, USA (2013)Google Scholar
  11. 11.
    Amelio, A., Pizzuti, C.: An evolutionary approach for image segmentation. Evolut. Comput. 22(4), 525–557 (2014)CrossRefGoogle Scholar
  12. 12.
    Amelio, A., Pizzuti, C.: A new evolutionary-based clustering framework for image databases. In: 6th International Conference on Image and Signal Processing, ICISP 2014, Cherbourg, France, 30 June–2 July 2014, Proceedings, pp. 322–331. Springer International Publishing (2014)Google Scholar
  13. 13.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: 9th European Conference on Computer Vision, ECCV 2006, Graz, Austria, 7–13 May 2006, Proceedings, Part I, pp. 404–417. Springer, Berlin, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Belhassen, S., Zaidi, H.: A novel fuzzy c-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med. Phys. 37(3), 1309–1324 (2010)CrossRefGoogle Scholar
  15. 15.
    Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)CrossRefGoogle Scholar
  16. 16.
    Boyle, S.A., Kennedy, C.M., Torres, J., Colman, K., Pérez-Estigarribia, P.E., de la Sancha, N.: High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLOS ONE 9(1), 1–11 (01 2014)CrossRefGoogle Scholar
  17. 17.
    Brodić, D., Amelio, A.: Classification of the hand-printed and printed medieval glagolitic documents using differentiation in orthography. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1110–1115, May 2017Google Scholar
  18. 18.
    Brodić, D., Amelio, A., Milivojević, Z.N.: An approach to the language discrimination in different scripts using adjacent local binary pattern. J. Exp. Theor. Artif. Intell. 29(5), 929–947 (2017)CrossRefGoogle Scholar
  19. 19.
    Brodić, D., Amelio, A., Milivojević, Z., Jevtić, M.: Document image coding and clustering for script discrimination. ICIC Express Lett. 10(7), 1561–1566 (2016)Google Scholar
  20. 20.
    Brodić, D., Amelio, A.: Dating the historical documents from digitalized books by orthography recognition. In: Digital Libraries and Archives: 13th Italian Research Conference on Digital Libraries, IRCDL 2017, Modena, Italy, 26–27 January 2017, Revised Selected Papers, pp. 119–131. Springer International Publishing (2017)Google Scholar
  21. 21.
    Brodić, D., Amelio, A.: Discrimination of different Serbian pronunciations from Shtokavian dialect. Procedia Comput. Sci. 112, 1935–1944 (2017). In: Proceedings of the 21st International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, KES-2017, 6–8 September 2017, Marseille, FranceGoogle Scholar
  22. 22.
    Brodić, D., Amelio, A.: Recognizing the orthography changes for identifying the temporal origin on the example of the Balkan historical documents. Neural Comput. Appl. (2017)Google Scholar
  23. 23.
    Brodić, D., Amelio, A., Janković, R., Milivojević, Z.N.: Analysis of the reforming languages by image-based variations of LBP and NBP operators. In: 11th International Workshop on Multi-disciplinary Trends in Artificial Intelligence, MIWAI 2017, Gadong, Brunei, 20–22 November 2017, Proceedings, pp. 238–251. Springer International Publishing (2017)Google Scholar
  24. 24.
    Brodić, D., Amelio, A., Milivojević, Z.N.: Characterization and distinction between closely related south Slavic languages on the example of Serbian and Croatian. In: 16th International Conference on Computer Analysis of Images and Patterns, CAIP 2015, Valletta, Malta, 2–4 September 2015 Proceedings, Part I, pp. 654–666. Springer International Publishing (2015)CrossRefGoogle Scholar
  25. 25.
    Brodić, D., Amelio, A., Milivojević, Z.N.: Identification of Fraktur and Latin scripts in German historical documents using image texture analysis. Appl. Artif. Intell. 30(5), 379–395 (2016)CrossRefGoogle Scholar
  26. 26.
    Brodić, D., Amelio, A., Milivojević, Z.N.: Clustering documents in evolving languages by image texture analysis. Appl. Intell. 46(4), 916–933 (2017)CrossRefGoogle Scholar
  27. 27.
    Brodić, D., Amelio, A., Milivojević, Z.N.: An image texture analysis method for minority language identification. In: 18th International Workshop on Combinatorial Image Analysis, IWCIA 2017, Plovdiv, Bulgaria, 19–21 June 2017, Proceedings, pp. 280–293. Springer International Publishing (2017)Google Scholar
  28. 28.
    Brodić, D., Amelio, A., Milivojević, Z.N.: Language discrimination by texture analysis of the image corresponding to the text. Neural Comput. Appl. 29(6), 151–172 (2018)CrossRefGoogle Scholar
  29. 29.
    Brodić, D., Milivojević, Z., Amelio, A.: Analysis of the south Slavic scripts by run-length features of the image texture. Elektronika ir Elektrotechnika 21(4) (2015)Google Scholar
  30. 30.
    Chen, N., Blostein, D.: A survey of document image classification: problem statement, classifier architecture and performance evaluation. Int. J. Doc. Anal. Recognit. (IJDAR) 10(1), 1–16 (2007)CrossRefGoogle Scholar
  31. 31.
    Choi, J., Yoo, T., Seo, J., Kwak, J., Um, T., Rim, T.: Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLoS ONE 12(11), e0187336 (2017)CrossRefGoogle Scholar
  32. 32.
    Chu, A., Sehgal, C., Greenleaf, J.: Use of gray value distribution of run lengths for texture analysis. Pattern Recognit. Lett. 11(6), 415–419 (1990)CrossRefGoogle Scholar
  33. 33.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  34. 34.
    Dasarathy, B.V., Holder, E.B.: Image characterizations based on joint gray level-run length distributions. Pattern Recognit. Lett. 12(8), 497–502 (1991)CrossRefGoogle Scholar
  35. 35.
    Dawood, H., Dawood, H., Guo, P.: Texture image classification with improved Weber local descriptor. In: 13th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2014, Zakopane, Poland, 1–5 June 2014, Proceedings, Part I, pp. 684–692. Springer International Publishing (2014)CrossRefGoogle Scholar
  36. 36.
    Dey, N.: Classification and clustering in biomedical signal processing. In: Advances in Medical Technologies and Clinical Practice. IGI Global (2016)Google Scholar
  37. 37.
    Dey, S., Mukherjee, J., Sural, S.: Consensus-based clustering for document image segmentation. Int. J. Doc. Anal. Recognit. (IJDAR) 19(4), 351–368 (2016)CrossRefGoogle Scholar
  38. 38.
    Diem, M., Kleber, F., Fiel, S., Sablatnig, R.: Semi-automated document image clustering and retrieval. In: DRR. SPIE Proceedings, vol. 9021, pp. 90210M–90210M–10. SPIE (2014)Google Scholar
  39. 39.
    Duda, T., Canty, M.: Unsupervised classification of satellite imagery: choosing a good algorithm. Int. J. Remote Sens. 23(11), 2193–2212 (2002)CrossRefGoogle Scholar
  40. 40.
    Esposito, F., Malerba, D., Lisi, F.A.: Machine learning for intelligent processing of printed documents. J. Intell. Inf. Syst. 14(2), 175–198 (2000)CrossRefGoogle Scholar
  41. 41.
    Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)CrossRefGoogle Scholar
  42. 42.
    Fan, B., Wang, Z., Wu, F.: Local image descriptor: modern approaches. In: Springer Briefs in Computer Science. Springer (2015)Google Scholar
  43. 43.
    Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 524–531, June 2005Google Scholar
  44. 44.
    Filho, M., Ma, Z., Tavares, J.M.R.S.: A review of the quantification and classification of pigmented skin lesions: from dedicated to hand-held devices. J. Med. Syst. 39(11), 177 (2015)CrossRefGoogle Scholar
  45. 45.
    Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Gr. Image Process. 4(2), 172–179 (1975)CrossRefGoogle Scholar
  46. 46.
    Geng, J., Wang, H., Fan, J., Ma, X.: Deep supervised and contractive neural network for SAR image classification. IEEE Trans. Geosci. Remote Sens. 55(4), 2442–2459 (2017)CrossRefGoogle Scholar
  47. 47.
    Gonzalez, R.: Digital Image Processing. Pearson Education (2009). https://books.google.it/books?id=a62xQ2r_f8wC
  48. 48.
    Górriz, J., Segovia, F., Ramírez, J., Lassl, A., Salas-Gonzalez, D.: GMM based SPECT image classification for the diagnosis of Alzheimers disease. Appl. Soft Comput. 11(2), 2313–2325 (2011). The Impact of Soft Computing for the Progress of Artificial IntelligenceCrossRefGoogle Scholar
  49. 49.
    Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L.: Local contrast phase descriptor for fingerprint liveness detection. Pattern Recognit. 48(4), 1050–1058 (2015)CrossRefGoogle Scholar
  50. 50.
    Grossiord, E., Talbot, H., Passat, N., Meignan, M., Najman, L.: Automated 3D lymphoma lesion segmentation from PET/CT characteristics. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 174–178, April 2017Google Scholar
  51. 51.
    Gueld, M.O., Keysers, D., Deselaers, T., Leisten, M., Schubert, H., Ney, H., Lehmann, T.M.: Comparison of global features for categorization of medical images. In: Ratib, O.M., Huang, H.K. (eds.) Medical Imaging 2004: PACS and Imaging Informatics. Proceedings of the SPIE, vol. 5371, pp. 211–222 (2004)Google Scholar
  52. 52.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)CrossRefGoogle Scholar
  53. 53.
    Hassaballah, M., Abdelmgeid, A.A., Alshazly, H.A.: Image features detection, description and matching. In: Image Feature Detectors and Descriptors: Foundations and Applications, pp. 11–45. Springer International Publishing (2016)CrossRefGoogle Scholar
  54. 54.
    Hassan, G., El-Bendary, N., Hassanien, A.E., Fahmy, A., Shoeb, A.M., Snasel, V.: Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput. Sci. 65, 612–622 (2015). In: International Conference on Communications, management, and Information technology (ICCMIT’2015)Google Scholar
  55. 55.
    Heroux, P., Diana, S., Ribert, A., Trupin, E.: Classification method study for automatic form class identification. In: Proceedings of the Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170), vol. 1, pp. 926–928, August 1998Google Scholar
  56. 56.
    Hiremath, P.S., Bhusnurmath, R.A.: RGB-based color texture image classification using anisotropic diffusion and LDBP. In: 8th International Workshop on Multi-disciplinary Trends in Artificial Intelligence, MIWAI 2014, Bangalore, India, 8–10 December 2014, Proceedings, pp. 101–111. Springer International Publishing (2014)Google Scholar
  57. 57.
    Ho, C.Y., Pai, T.W., Peng, Y.C., Lee, C.H., Chen, Y.C., Chen, Y.T., Chen, K.S.: Ultrasonography image analysis for detection and classification of chronic kidney disease. In: 2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 624–629, July 2012Google Scholar
  58. 58.
    Jog, S., Dixit, M.: Supervised classification of satellite images. In: 2016 Conference on Advances in Signal Processing (CASP), pp. 93–98, June 2016Google Scholar
  59. 59.
    Kanan, C., Cottrell, G.: Robust classification of objects, faces, and flowers using natural image statistics. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2472–2479, June 2010Google Scholar
  60. 60.
    Kang, L., Kumar, J., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for document image classification. In: 2014 22nd International Conference on Pattern Recognition, pp. 3168–3172, August 2014Google Scholar
  61. 61.
    Kharfi, F.: Principles and applications of nuclear medical imaging: a survey on recent developments. In: Kharfi, F. (ed.) Imaging and Radioanalytical Techniques in Interdisciplinary Research—Fundamentals and Cutting Edge Applications, Chap. 01. InTech, Rijeka (2013). http://dx.doi.org/10.5772/54884CrossRefGoogle Scholar
  62. 62.
    Krig, S.: Computer Vision Metrics: Survey, Taxonomy, and Analysis. SpringerLink: Bücher, Apress (2014). https://books.google.it/books?id=ktKuAwAAQBAJGoogle Scholar
  63. 63.
    Kuric, E., Bielikova, M.: ANNOR: efficient image annotation based on combining local and global features. Comput. Gr. 47(Suppl C), 1–15 (2015)CrossRefGoogle Scholar
  64. 64.
    Lakhani, P.: Deep convolutional neural networks for endotracheal tube position and X-ray image classification: challenges and opportunities. J. Digital Imaging 30(4), 460–468 (2017)CrossRefGoogle Scholar
  65. 65.
    Lee, C.S., Baughman, D.M., Lee, A.Y.: Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retina 1(4), 322–327 (2017)CrossRefGoogle Scholar
  66. 66.
    Li, X., Luo, S., Li, J.: Liver segmentation from CT image using fuzzy clustering and level set. J. Signal Inf. Process. 4, 36–42 (2013)Google Scholar
  67. 67.
    Liu, X., Song, J.L., Wang, S., Zhao, J., Chen, Y.Q.: Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors 17(1), 149 (2017)CrossRefGoogle Scholar
  68. 68.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  69. 69.
    Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)CrossRefGoogle Scholar
  70. 70.
    Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y.: A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 130, 277–293 (2017)CrossRefGoogle Scholar
  71. 71.
  72. 72.
    Marée, R., Geurts, P., Visimberga, G., Piater, J., Wehenkel, L.: A comparison of generic machine learning algorithms for image classification. In: Coenen, F., Preece, A., Macintosh, A. (eds.) Research and Development in Intelligent Systems, vol. XX, pp. 169–182. Springer, London (2004)CrossRefGoogle Scholar
  73. 73.
    Margolin, R., Zelnik-Manor, L., Tal, A.: OTC: a novel local descriptor for scene classification. In: 13th European Conference on Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part VII, pp. 377–391. Springer International Publishing (2014)Google Scholar
  74. 74.
    Mary, M.C.V.S., Rajsingh, E.B., Naik, G.R.: Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access 4, 4327–4354 (2016)CrossRefGoogle Scholar
  75. 75.
    Miao, R.H., Tang, J.L., Chen, X.Q.: Classification of farmland images based on color features. J. Vis. Commun. Image Represent. 29(Suppl C), 138–146 (2015)CrossRefGoogle Scholar
  76. 76.
    Montagne, C., Kodewitz, A., Vigneron, V., Giraud, V., Lelandais, S.: 3D local binary pattern for PET image classification by SVM—application to early Alzheimer disease diagnosis. In: Alvarez, S., Sol-Casals, J., Fred, A.L.N., Gamboa, H. (eds.) Biosignals, pp. 145–150. SciTePress (2013)Google Scholar
  77. 77.
    Morales, A., Ferrer, M.A., Diaz-Cabrera, M., Gonzlez, E.: Analysis of local descriptors features and its robustness applied to ear recognition. In: 2013 47th International Carnahan Conference on Security Technology (ICCST), pp. 1–5, October 2013Google Scholar
  78. 78.
    Nasr-Esfahani, E., Samavi, S., Karimi, N., Soroushmehr, S.M.R., Ward, K., Jafari, M.H., Felfeliyan, B., Nallamothu, B., Najarian, K.: Vessel extraction in X-ray angiograms using deep learning. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 643–646, August 2016Google Scholar
  79. 79.
    Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  80. 80.
    Nosaka, R., Ohkawa, Y., Fukui, K.: Feature extraction based on co-occurrence of adjacent local binary patterns. In: Advances in Image and Video Technology: 5th Pacific Rim Symposium, PSIVT 2011, Gwangju, South Korea, 20–23 November 2011, Proceedings, Part II, pp. 82–91. Springer, Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  81. 81.
    O’Gorman, L.: Document Image Analysis: An Executive Briefing, 1st edn. IEEE Computer Society Press, Los Alamitos, CA, USA (1997)Google Scholar
  82. 82.
    Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  83. 83.
    Rahman, M.M.: An unsupervised segmentation algorithm for breast ultrasound images using local histogram features. In: 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec), pp. 1–6, December 2016Google Scholar
  84. 84.
    Ramesha, K., Srikanth, N., Raja, K.B., Venugopal, K.R., Patnaik, L.M.: Advanced biometric identification on face, gender and age recognition. In: 2009 International Conference on Advances in Recent Technologies in Communication and Computing, pp. 23–27, October 2009Google Scholar
  85. 85.
    Ramirez, J., Gorriz, J.M., Chaves, R., Lopez, M., Salas-Gonzalez, D., Alvarez, I., Segovia, F.: Spect image classification using random forests. Electron. Lett. 45(12), 604–605 (2009)CrossRefGoogle Scholar
  86. 86.
    Romeo, S., Ienco, D., Tagarelli, A.: Knowledge-Based Representation for Transductive Multilingual Document Classification, pp. 92–103. Springer International Publishing (2015)Google Scholar
  87. 87.
    Šajn, L., Kukar, M., Kononenko, I., Milčinski, M.: Automatic segmentation of whole-body bone scintigrams as a preprocessing step for computer assisted diagnostics. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) Artificial Intelligence in Medicine, pp. 363–372. Springer, Berlin, Heidelberg (2005)CrossRefGoogle Scholar
  88. 88.
    Serrau, A., Marcialis, G.L., Bunke, H., Roli, F.: An experimental comparison of fingerprint classification methods using graphs. In: 5th IAPR International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2005, Poitiers, France, 11–13 April 2005, Proceedings, pp. 281–290. Springer, Berlin, Heidelberg (2005)CrossRefGoogle Scholar
  89. 89.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  90. 90.
    Song, Q., Zhao, L., Luo, X., Dou, X.: Using deep learning for classification of lung nodules on computed tomography images. J. Healthc. Eng. 2017 (1 2017)CrossRefGoogle Scholar
  91. 91.
    Sumithra, R., Suhil, M., Guru, D.: Segmentation and classification of skin lesions for disease diagnosis. Procedia Comput. Sci. 45, 76–85 (2015). In: International Conference on Advanced Computing Technologies and Applications (ICACTA)CrossRefGoogle Scholar
  92. 92.
    Sun, S., Yan, S., Wang, Y., Li, Y.: Brain MRI image segmentation based on improved fuzzy c-means algorithm. In: 2016 International Conference on Smart City and Systems Engineering (ICSCSE), pp. 503–505, November 2016Google Scholar
  93. 93.
    Szabo, T.: Diagnostic ultrasound imaging: inside out. In: Biomedical Engineering, Elsevier Science (2013). https://books.google.it/books?id=wTYTAAAAQBAJ
  94. 94.
    Ünsalan, C., Boyer, K.: Multispectral satellite image understanding: from land classification to building and road detection. In: Advances in Computer Vision and Pattern Recognition. Springer, London (2011)Google Scholar
  95. 95.
    Vandenbroucke, N., Macaire, L., Postaire, J.G.: Color image segmentation by supervised pixel classification in a color texture feature space. Application to soccer image segmentation. In: Proceedings 15th International Conference on Pattern Recognition, ICPR-2000, vol. 3, pp. 621–624 (2000)Google Scholar
  96. 96.
    Wahab, A., Chin, S.H., Tan, E.C.: Novel approach to automated fingerprint recognition. IEE Proc. Vis. Image Signal Process. 145(3), 160–166 (1998)CrossRefGoogle Scholar
  97. 97.
    Wang, L., Zhang, K., Liu, X., Long, E., Jiang, J., An, Y., Zhang, J., Liu, Z., Lin, Z., Li, X., Chen, J., Cao, Q., Li, J., Wu, X., Wang, D., Li, W., Lin, H.: Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images. Sci. Rep. 7, 41545 (2017)CrossRefGoogle Scholar
  98. 98.
    Wikipedia: Digital image processing. https://en.wikipedia.org/wiki/Digital_image_processing
  99. 99.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2016)Google Scholar
  100. 100.
    Wu, G., Shen, D., Sabuncu, M.: Machine Learning and Medical Imaging. Elsevier Science (2016)Google Scholar
  101. 101.
    Xiao, Z., Ding, Y., Lan, T., Zhang, C., Luo, C., Qin, Z.: Brain MR image classification for Alzheimer’s disease diagnosis based on multifeature fusion. Comput. Math. Methods Med. 2017, 1952373:1–1952373:13 (2017)CrossRefGoogle Scholar
  102. 102.
    Yang, F., Hamit, M., Yan, C.B., Yao, J., Kutluk, A., Kong, X.M., Zhang, S.X.: Feature extraction and classification on esophageal X-ray images of Xinjiang Kazak Nationality. J. Healthc. Eng. 2017(4620732), 11 (2017)Google Scholar
  103. 103.
    Yang, H.Y., Zhang, X.J., Wang, X.Y.: LS-SVM-based image segmentation using pixel color-texture descriptors. Pattern Anal. Appl. 17(2), 341–359 (2014)MathSciNetCrossRefGoogle Scholar
  104. 104.
    Zhang, D., Xu, Y., Zuo, W.: Discriminative Learning in Biometrics. Springer, Singapore (2016)CrossRefGoogle Scholar
  105. 105.
    Zhang, X., Cui, J., Wang, W., Lin, C.: A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors 17(7, 1474) (2017)CrossRefGoogle Scholar
  106. 106.
    Zhu, J., Samuel, K.G.G., Masood, S.Z., Tappen, M.F.: Learning to recognize shadows in monochromatic natural images. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 223–230, June 2010Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Medicine and SurgeryUniversity of BolognaBolognaItaly
  2. 2.DIMES University of CalabriaRendeItaly

Personalised recommendations