Advertisement

Intelligent Data Analysis in Electric Power Engineering Applications

  • V. P. AndrovitsaneasEmail author
  • K. Boulas
  • G. D. DouniasEmail author
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 149)

Abstract

This chapter presents various intelligent approaches for modelling, generalization and knowledge extraction from data, which are applied in different electric power engineering domains of the real world. Specifically, the chapter presents: (1) the application of ANNs, inductive ML, genetic programming and wavelet NNs, in the problem of ground resistance estimation, an important problem for the design of grounding systems in constructions, (2) the application of ANNs, genetic programming and nature inspired techniques such as gravitational search algorithm in the problem of estimating the value of critical flashover voltage of insulators, a well-known difficult topic of electric power systems, (3) the application of specific intelligent techniques (ANNs, fuzzy logic, etc.) in load forecasting problems and in optimization tasks in transmission lines. The presentation refers to previously conducted research related to the application domains and briefly analyzes each domain of application, the data corresponding to the problem under consideration, while are also included a brief presentation of each intelligent technique and presentation and discussion of the results obtained. Intelligent approaches are proved to be handy tools for the specific applications as they succeed to generalize the operation and behavior of specific parts of electric power systems, they manage to induce new, useful knowledge (mathematical relations, rules and rule based systems, etc.) and thus they effectively assist the proper design and operation of complex real world electric power systems.

References

  1. 1.
    Std 80–2013: IEEE guide for safety in AC substation grounding. IEEE Std 80-2013 Cor 1-2015 (2015)Google Scholar
  2. 2.
    S. 81–2012: Std A.E.E.E.: IEEE guide for measuring earth resistivity, ground impedance, and earth surface potentials of a grounding system. IEEE Std 81-2012 (2012)Google Scholar
  3. 3.
    Tsekouras, G.J., Kanellos, F.D., Mastorakis, N.: Short term load forecasting in electric power systems with artificial neural networks. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering, vol. 343, pp. 19–58, Cham, Springer International Publishing (2015)Google Scholar
  4. 4.
    Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Experimental study on transient impedance of grounding rods encased in ground enhancing compounds. Electr. Power Syst. Res. 139, 109–115 (2016)CrossRefGoogle Scholar
  5. 5.
    Banton, O., Cimon, M.-A., Seguin, M.-K.: Mapping field-scale physical properties of soil with electrical resistivity. Soil Sci. Soc. Am. J. 61(4), 1010–1017 (1997)CrossRefGoogle Scholar
  6. 6.
    Gonos, I.F., Stathopulos, I.A.: Estimation of multilayer soil parameters using genetic algorithms. IEEE Trans. Power Deliv. 20(1), 100–106 (2005)CrossRefGoogle Scholar
  7. 7.
    Gonos, I.F., Moronis, A.X., Stathopulos, I.A.: Variation of soil resistivity and ground resistance during the year. In: Presented at the Proceedings of the 28th International Conference on Lightning Protection (ICLP 2006), pp. 740–744. Kanazawa, Japan (2006)Google Scholar
  8. 8.
    Sudha, K., Israil, M., Mittal, S., Rai, J.: Soil characterization using electrical resistivity tomography and geotechnical investigations. J. Appl. Geophys. 67(1), 74–79 (2009)CrossRefGoogle Scholar
  9. 9.
    Tagg, G.F.: Earth resistances. George Newnes Limited, London (1964)Google Scholar
  10. 10.
    Ahmad, W.F.W., Rahman, M.S.A., Jasni, J., Ab Kadir, M.Z.A., Hizam, H.: Chemical enhancement materials for grounding purposes. In: Proceedings of ICLP, pp. 1233–1241 (2010)Google Scholar
  11. 11.
    Galván, A.D., Pretelin, G.G., Gaona, E.E.: Practical evaluation of ground enhancing compounds for high soil resistivities. In: Presented at the Proceedings of ICLP, pp. 1233–1241 (2010)Google Scholar
  12. 12.
    Jasni, J., Siow, L.K., Ab Kadir, M.A., Ahmad, W.W.: Natural Materials as Grounding Filler For Lightning Protection System, pp. 1101–1111 (2010)Google Scholar
  13. 13.
    Gomes, C., Lalitha, C., Priyadarshanee, C.: Improvement of earthing systems with backfill materials. In: 2010 30th International Conference Lightning Protection (ICLP). Cagliary, Italy (2010)CrossRefGoogle Scholar
  14. 14.
    Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Performance of ground enhancing compounds during the year, in 2012 Int. Conf, Lightning Protection (ICLP) (2012)Google Scholar
  15. 15.
    Boulas, K., Androvitsaneas, V.P., Gonos, I.F., Dounias, G., Stathopulos, I.A.: Ground resistance estimation using genetic programming. In: 5th International Symposium and 27th National Conference Operation Research, pp. 66–71. Aigaleo, Athens (2016)Google Scholar
  16. 16.
    Blattner, C.J.: Prediction of soil resistivity and ground rod resistance for deep ground electrodes. IEEE Trans. Power Appar. Syst. PAS-99(5): 1758–1763 (1980)CrossRefGoogle Scholar
  17. 17.
    Salam, M.A., Al-Alawi, S.M., Maqrashi, A.A.: An artificial neural networks approach to model and predict the relationship between the grounding resistance and length of buried electrode in the soil. J. Electrost. 64(5), 338–342 (2006)CrossRefGoogle Scholar
  18. 18.
    Gouda, O., Amer, M., El Saied, M.: Optimum design of grounding systems in uniform and non-uniform soils using ANN. Int. J. Soft Comput. 1(3), 175–180 (2006)Google Scholar
  19. 19.
    Asimakopoulou, F.E., Kourni, E.A., Kontargyri, V.T., Tsekouras, G.J., Stathopulos, I.A.: Artificial neural network methodology for the estimation of ground resistance. In: Presented at the 15th WSEAS International Conference on Systems 2011, pp. 453–458. Corfu Island, Greece (2011)Google Scholar
  20. 20.
    Asimakopoulou, F.E., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Estimation of seasonal variation of ground resistance using artificial neural networks. Electr. Power Syst. Res. 94, 113–121 (2013)CrossRefGoogle Scholar
  21. 21.
    Androvitsaneas, V.P., Asimakopoulou, F.E., Gonos, I.F., Stathopulos, I.A.: Estimation of ground enhancing compound performance using artificial neural network. In: Paper Presented at the 2012 International Conference on High Voltage Engineering and Application (ICHVE), pp. 145–149. Shanghai, China (2012)Google Scholar
  22. 22.
    Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Artificial neural network methodology for the estimation of ground enhancing compounds resistance. IET Sci. Meas. Technol. 8(6), 552–570 (2014)CrossRefGoogle Scholar
  23. 23.
    Androvitsaneas, V.P., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Design of an artificial neural network for ground resistance forecasting. In: Proceedings of 9th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (Med Power 2014), Athens, Greece (2014)Google Scholar
  24. 24.
    Cao, L., Hong, Y., Fang, H., He, G.: Predicting chaotic time series with wavelet networks. Phys. Nonlinear Phenom. 85(1), 225–238 (1995)zbMATHGoogle Scholar
  25. 25.
    Fang, Y., Chow, T.W.S.: Wavelets based neural network for function approximation. In: Advances in Neural Networks—ISNN 2006, vol. 3971, pp. 80–85 (2006)CrossRefGoogle Scholar
  26. 26.
    Alexandridis, A.K., Zapranis, A.D.: Wavelet neural networks: with applications in financial engineering, chaos, and classification. Wiley, New Jersey (2014)CrossRefGoogle Scholar
  27. 27.
    Androvitsaneas, V.P., Alexandridis, A.K., Gonos, I.F., Dounias, G.D., Stathopulos, I.A.: Wavelet neural network methodology for ground resistance forecasting. Electr. Power Syst. Res. 140, 288–295 (2016)CrossRefGoogle Scholar
  28. 28.
    Zhang, Q.: Using wavelet network in nonparametric estimation. IEEE Trans. Neural Netw. 8(2), 227–236 (1997)CrossRefGoogle Scholar
  29. 29.
    Androvitsaneas, V., Gonos, I., Dounias, G., Stathopulos, I.: Ground resistance estimation using inductive machine learning. In: Presented at the the 19th International Symposium on High Voltage Engineering, Pilsen Czech Republic (2015)Google Scholar
  30. 30.
    Mitchell, T.M.: Machine Learning, vol. 1, McGraw-Hill (1997)Google Scholar
  31. 31.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  32. 32.
    Quinlan, R.J.: C4.5: Programs for Machine Learning. San Mateo, California, USA: Morgan Kaufmann (1993)Google Scholar
  33. 33.
    Androvitsaneas, V.P.: Contribution to Behavioral Study of Grounding Systems Encased in Ground Enhancing Compounds, PhD Thesis, NTUA, Athens, Greece, (in Greek) (2016)Google Scholar
  34. 34.
    Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, Berlin, Heidelberg (2006)zbMATHGoogle Scholar
  35. 35.
    Looms, J.: Insulators for high voltages. IET (1988)Google Scholar
  36. 36.
    Mackevich, J., Shah, M.: Polymer outdoor insulating materials. Part I: Comparison of porcelain and polymer electrical insulation. IEEE Electr. Insul. Mag. 13(3), 5–12 (1997)CrossRefGoogle Scholar
  37. 37.
    Obenaus, F.: Fremdschichtueberschlag und kriechweglaenge. Dtsch. Elektrotechnik 4, 135–136 (1958)Google Scholar
  38. 38.
    Topalis, F.V., Gonos, I.F., Stathopulos, I.A.: Dielectric behaviour of polluted porcelain insulators. IEE Proc. Gener. Transm. Distrib. 148(4), 269–274(5) (2001)CrossRefGoogle Scholar
  39. 39.
    International Electrotechnical Commission: Artificial pollution tests on high voltage insulators to be used on AC systems. Int. Stand. IEC 507 (1991)Google Scholar
  40. 40.
    Ikonomou, K., Katsibokis, G., Panos, G., Stathopoulos: Cool fog tests on artificially polluted insulators. In: Presented at the 5th International Symposium on High Voltage Engineering, Braunschweig, vol. 2, p. paper 52.13 (1987)Google Scholar
  41. 41.
    Guan, Z., Zhang, R.: Calculation of DC and AC flashover voltage of polluted insulators. IEEE Trans. Electr. Insul. 25(4), 723–729 (1990)CrossRefGoogle Scholar
  42. 42.
    Sundararajan, R., Sadhureddy, N.R., Gorur, R.S.: Computer-aided design of porcelain insulators under polluted conditions. IEEE Trans. Dielectr. Electr. Insul. 2(1), 121–127 (1995)CrossRefGoogle Scholar
  43. 43.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning (1989)Google Scholar
  44. 44.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press (1992)Google Scholar
  45. 45.
    Kramer, O.: Genetic Algorithm Essentials, vol. 679. Springer (2017)CrossRefGoogle Scholar
  46. 46.
    Gonos, I.F., Topalis, F.V., Stathopolos, I.A.: Genetic algorithm approach to the modelling of polluted insulators. IEE Proc. Gener. Transm. Distrib. 149(3), 373–376(3) (2002)CrossRefGoogle Scholar
  47. 47.
    Rizk, F.A.: Mathematical models for pollution flashover. Electra 78(5), 71–103 (1981)Google Scholar
  48. 48.
    Ghosh, P., Chatterjee, N.: Polluted insulator flashover model for AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2(1), 128–136 (1995)CrossRefGoogle Scholar
  49. 49.
    Kontargyri, V.T., Gialketsi, A.A., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Design of an artificial neural network for the estimation of the flashover voltage on insulators. Electr. Power Syst. Res. 77(12), 1532–1540 (2007)CrossRefGoogle Scholar
  50. 50.
    Ghosh, P., Chakravorti, S., Chatterjee, N.: Estimation of time-to-flashover characteristics of contaminated electrolytic surfaces using a neural network. IEEE Trans. Dielectr. Electr. Insul. 2(6), 1064–1074 (1995)CrossRefGoogle Scholar
  51. 51.
    Cline, P., Lannes, W., Richards, G.: Use of pollution monitors with a neural network to predict insulator flashover. Electr. Power Syst. Res. 42(1), 27–33 (1997)CrossRefGoogle Scholar
  52. 52.
    Ugur, M., Auckland, D.W., Varlow, B.R., Emin, Z.: Neural networks to analyze surface tracking on solid insulators. IEEE Trans. Dielectr. Electr. Insul. 4(6), 763–766 (1997)CrossRefGoogle Scholar
  53. 53.
    Dixit, P., Gopal, H.G.: ANN based three stage classification of arc gradient of contaminated porcelain insulators. In: Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004, vol. 1, pp. 427–430. Toulouse, France (2004)Google Scholar
  54. 54.
    Ghosh, S., Kishore, N.: Modeling PD inception voltage of epoxy resin post insulators using an adaptive neural network. IEEE Trans. Dielectr. Electr. Insul. 6(1), 131–134 (1999)CrossRefGoogle Scholar
  55. 55.
    Jahromi, A.N., El-Hag, A.H., Cherney, E.A., Jayaram, S.H., Sanaye-Pasand, M., Mohseni, H.: Prediction of leakage current of composite insulators in salt fog test using neural network. In: CEIDP’05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 309–312 (2005)Google Scholar
  56. 56.
    Jahromi, A.N., El-Hag, A.H., Jayaram, S.H., Cherney, E.A., Sanaye-Pasand, M., Mohseni, H.: A neural network based method for leakage current prediction of polymeric insulators. IEEE Trans. Power Deliv. 21(1), 506–507 (2006)CrossRefGoogle Scholar
  57. 57.
    da Silva, A.P.A., Moulin, L.S.: Confidence intervals for neural network based short-term load forecasting. IEEE Trans. Power Syst. 15(4), 1191–1196 (2000)CrossRefGoogle Scholar
  58. 58.
    Asimakopoulou, G., Kontargyri, V., Tsekouras, G., Asimakopoulou, F., Gonos, I., Stathopulos, I.: Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators. IET Sci. Meas. Technol. 3(1), 90–104 (2009)CrossRefGoogle Scholar
  59. 59.
    Karampotsis, E. et al.: Computational intelligence techniques for modelling the critical flashover voltage of insulators: from accuracy to comprehensibility. In: Advances in Artificial Intelligence: From Theory to Practice: 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Arras, France, June 27–30, In: Benferhat, S., Tabia, K., Ali, M. (eds.) Proceedings, Part I, pp. 295–301 Cham, Springer International Publishing (2017)CrossRefGoogle Scholar
  60. 60.
    Popescu, M.-C., Balas, V.E., Perescu-Popescu, L., Mastorakis, N.: Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 8(7), 579–588 (2009)Google Scholar
  61. 61.
    Ganatra, A., Kosta, Y., Panchal, G., Gajjar, C.: Initial classification through back propagation in a neural network following optimization through GA to evaluate the fitness of an algorithm. Int. J. Comput. Sci. Inf. Technol. 3(1), 98–116 (2011)Google Scholar
  62. 62.
    Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: LIU, L., ÖZSU, M.T. (eds.) Encyclopedia of database systems, pp. 532–538. Boston, MA, Springer, US (2009)Google Scholar
  63. 63.
    Androvitsaneas, V.P., Karampotsis, E., Gonos, I.F., Dounias, G., Stathopolos, I.A.: Critical Flashover Voltage on Polluted Insulators Estimated Using Conventional and Intelligent Techniques. In: Presented at the 20th International Symposium on High-Voltage Technology (ISH). Buenos Aires, Argentina (2017)Google Scholar
  64. 64.
    Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press (1992)Google Scholar
  65. 65.
    Crane, E.F., McPhee, N.F.: The effects of size and depth limits on tree based genetic programming. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III, pp. 223–240. Boston, MA, Springer, US (2006)Google Scholar
  66. 66.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefGoogle Scholar
  67. 67.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  68. 68.
    Yang, H.-T., Huang, C.-M., Huang, C.-L.: Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Trans. Power Syst. 11(1), 403–408 (1996)CrossRefGoogle Scholar
  69. 69.
    Haida, T., Muto, S.: Regression based peak load forecasting using a transformation technique. IEEE Trans. Power Syst. 9(4), 1788–1794 (1994)CrossRefGoogle Scholar
  70. 70.
    Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)CrossRefGoogle Scholar
  71. 71.
    Mastorocostas, P.A., Theocharis, J.B., Bakirtzis, A.G.: Fuzzy modeling for short term load forecasting using the orthogonal least squares method. IEEE Trans. Power Syst. 14(1), 29–36 (1999)CrossRefGoogle Scholar
  72. 72.
    Bakirtzis, A.G., Petridis, V., Kiartzis, S.J., Alexiadis, M.C., Maissis, A.H.: A neural network short term load forecasting model for the Greek power system. IEEE Trans. Power Syst. 11(2), 858–863 (1996)CrossRefGoogle Scholar
  73. 73.
    Kiartzis, S.J., Zoumas, C.E., Theocharis, J.B., Bakirtzis, A.G., Petridis, V.: Short-term load forecasting in an autonomous power system using artificial neural networks. IEEE Trans. Power Syst. 12(4), 1591–1596 (1997)CrossRefGoogle Scholar
  74. 74.
    Elias, C.N., Tsekouras, G., Kavatza, S., Contaxis, G.: A midterm energy forecasting method using fuzzy logic. WSEAS Trans. Syst. 3(5), 2128–2135 (2004)Google Scholar
  75. 75.
    Tsekouras, G.J., Hatziargyriou, N.D., Dialynas, E.N.: An optimized adaptive neural network for annual midterm energy forecasting. IEEE Trans. Power Syst. 21(1), 385–391 (2006)CrossRefGoogle Scholar
  76. 76.
    Tsekouras, G. et al.: A comparison of artificial neural networks algorithms for short term load forecasting in Greek intercontinental power system. In: Presented at the WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, Canary Islands, Spain, pp. 15–17 (2008)Google Scholar
  77. 77.
    Ekonomou, L., Iracleous, D., Gonos, I., Stathopulos, I.: Lightning performance identification of high voltage transmission lines using artificial neural networks. Eng. Intell. Syst. Electr. Eng. Commun. 13(3), 219–223 (2005)Google Scholar
  78. 78.
    Ekonomou, L., Liatsis, P., Gonos, I.F., Stathopulos, I.A.: Artificial neural network-based software tool for calculating the lightning performance of high-voltage transmission lines. IEE Proc. Sci. Meas. Technol. 153(5), 188–193(5) (2006)CrossRefGoogle Scholar
  79. 79.
    Ekonomou, L., Gonos, I.F., Iracleous, D.P., Stathopulos, I.A.: Application of artificial neural network methods for the lightning performance evaluation of Hellenic high voltage transmission lines. Electr. Power Syst. Res. 77(1):55–63 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.High Voltage Laboratory, School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece
  2. 2.Management & Decision Engineering Lab, Department of Financial and Management EngineeringUniversity of the AegeanChiosGreece

Personalised recommendations