Machine Learning Paradigms: Advances in Data Analytics

  • George A. TsihrintzisEmail author
  • Dionisios N. Sotiropoulos
  • Lakhmi C. Jain
Part of the Intelligent Systems Reference Library book series (ISRL, volume 149)


At the dawn of the 4th Industrial Revolution, data analytics is emerging as a force that drives towards dramatic changes in our daily lives, the workplace and human relationships. Synergies between physical, digital, biological and energy sciences and technologies, brought together by non-traditional data collection and analysis, drive the digital economy at all levels and offer new, previously-unavailable opportunities. The need for data analytics arises in most modern scientific disciplines, including engineering; natural-, computer- and information sciences; economics; business; commerce; environment; healthcare; and life sciences. Coming as the third volume under the general title MACHINE LEARNING PARADIGMS, the book includes an editorial note (Chapter 1) and an additional 12 chapters, and is divided into five parts: (1) Data Analytics in the Medical, Biological and Signal Sciences, (2) Data Analytics in Social Studies and Social Interactions, (3) Data Analytics in Traffic, Computer and Power Networks, (4) Data Analytics for Digital Forensics, and (5) Theoretical Advances and Tools for Data Analytics. This research book is intended for both experts/researchers in the field of data analytics, and readers working in the fields of artificial and computational intelligence as well as computer science in general who wish to learn more about the field of data analytics and its applications. An extensive list of bibliographic references at the end of each chapter guides readers to probe further into the application areas of interest to them.


  1. 1.
    Schwabd, K.: The fourth industrial revolution—what it means and how to respond. Foreign Aff. (2015)
  2. 2.
    Toonders, J.: Data is the new oil of the digital economy. Wired
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Lampropoulos, A.S., Tsihrintzis, G.A.: Machine learning paradigms—applications in recommender systems. In: Intelligent Systems Reference Library Book Series, vol. 92 Springer (2015)Google Scholar
  8. 8.
    Sotiropoulos, D.N., Tsihrintzis, G.A.: Machine Learning paradigms—artificial immune systems and their applications in software personalization. In: Intelligent Systems Reference Library Book Series, vol. 118. Springer (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • George A. Tsihrintzis
    • 1
    Email author
  • Dionisios N. Sotiropoulos
    • 1
  • Lakhmi C. Jain
    • 2
    • 3
  1. 1.University of PiraeusPiraeusGreece
  2. 2.University of Technology SydneyBroadwayAustralia
  3. 3.University of CanberraCanberraAustralia

Personalised recommendations