Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 292 Accesses

Abstract

In this chapter, thermal effects and their mitigation in enhancement cavities are discussed. It starts with an introduction in Sect. 4.1 on how thermal lenses affect the operation of enhancement cavities. In Sect. 4.2, a measure for the thermal sensitivity and a model for its calculation of arbitrary cavities will be introduced. Possibilities for mitigation of thermal effects using custom optics are reviewed in Sect. 4.3. Using the apparatus presented in Sect. 4.4, experiments targeting the power scaling of enhancement cavities were conducted, which are described in Sect. 4.5. The achievable power level in these experiments is limited by aberrations, which are examined in Sect. 4.6. The chapter is based on Carstens et al., (Opt Lett 39, 2014, [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These values were reached using mirrors supplied by Layertec GmbH, Mellingen.

References

  1. H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, J. Weitenberg, D.C. Yost, A. Alghamdi, Z. Alahmed, A. Azzeer, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett. 39, 2595 (2014)

    Article  ADS  Google Scholar 

  2. N. Lilienfein, H. Carstens, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, A. Apolonski, F. Krausz, I. Pupeza, Balancing of thermal lenses in enhancement cavities with transmissive elements. Opt. Lett. 40, 843–846 (2015)

    Article  ADS  Google Scholar 

  3. W.H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  4. H. Quarzglas, Thermal Properties of Fused Silica, http://heraeus-quarzglas.com/en/quarzglas/thermalproperties/Thermal_properties.aspx

  5. Corning, ULEDatasheet, https://www.corning.com/media/worldwide/ csm/documents/D20FD2EA-7264-43DD-B544-E1CA042B486A.pdf

  6. K. Saphir, Datasheet Sapphire, http://www.kyburz-sapphire.ch/upload/content/Saphir_Material_de.pdf

  7. C.J. Glassbrenner, G.A. Slack, Thermal conductivity of silicon and germanium from 3\(^{\circ }\)K to the melting point. Phys. Rev. 134, A1058–A1069 (1964)

    Article  Google Scholar 

  8. Y. Okada, Y. Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J. Appl. Phys. 56, 314 (1984)

    Article  ADS  Google Scholar 

  9. Corning, Datasheet CaF, https://www.corning.com/media/worldwide/csm/documents/Calcium_Fluoride_PI_Sheet_September_2014. pdf

  10. Northrop Grumman, Datasheet undoped YAG, http://www.northropgrumman.com/BusinessVentures/SYNOPTICS/Products/SpecialtyCrystals/pages/UndopedYAG.aspx

  11. Ohara, Datasheet Clearceram-Z, http://www.oharacorp.com/pdf/ccz-2013-nav.pdf

  12. Schott, Datasheet Zerodur, http://www.schott.com/advanced_optics/german/download/schott_zerodur_katalog_july_2011_en.pdf

  13. Diamond Materials, Thermal properties of CVD Diamond, http://www.diamond-materials.com/EN/cvd_diamond/thermal_properties.htm

  14. N. Bloembergen, Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics. Appl. Opt. 12, 661–664 (1973)

    Article  ADS  Google Scholar 

  15. A.M. Weiner, Ultrafast Optics (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  16. I.B. Angelov, M. von Pechmann, M.K. Trubetskov, F. Krausz, V. Pervak, Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHZ repetition rates. Opt. Express 21, 31453 (2013)

    Article  ADS  Google Scholar 

  17. J. Steinlechner, I.W. Martin, J. Hough, C. Krüger, S. Rowan, R. Schnabel, Thermal noise reduction and absorption optimization via multimaterial coatings. Phys. Rev. D 91, 042001 (2015)

    Article  ADS  Google Scholar 

  18. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T.W. Hänsch, A. Apolonski, F. Krausz, E. Fill, Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photonics 7, 608–612 (2013)

    Article  ADS  Google Scholar 

  19. S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, I. Pupeza, Femtosecond enhancement cavities in thenonlinear regime. Phys. Rev. Lett. 115, 023902 (2015)

    Article  ADS  Google Scholar 

  20. C. Jocher, T. Eidam, S. Hädrich, J. Limpert, A. Tünnermann, Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power. Opt. Lett. 37, 4407–4410 (2012)

    Article  ADS  Google Scholar 

  21. A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Broadband phase noise suppression in a Yb-fiber frequency comb. Opt. Lett. 36, 743–745 (2011)

    Article  ADS  Google Scholar 

  22. C. Jauregui, J. Limpert, A. Tünnermann, High-power fibre lasers. Nat. Photonics 7, 861–867 (2013)

    Article  ADS  Google Scholar 

  23. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z.A. Alahmed, A.M. Azzeer, A. Tünnermann, T.W. Hänsch, F. Krausz, Power scaling of a high-repetition-rate enhancement cavity. Opt. Lett. 35, 2052–2054 (2010)

    Article  ADS  Google Scholar 

  24. K. An, B.A. Sones, C. Fang-Yen, R.R. Dasari, M.S. Feld, Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level. Opt. Lett. 22, 1433 (1997)

    Article  ADS  Google Scholar 

  25. S. Holzberger, N. Lilienfein, M. Trubetskov, H. Carstens, F. Lücking, V. Pervak, F. Krausz, I. Pupeza, Enhancement cavities for zero-offsetfrequency pulse trains. Opt. Lett. 40, 2165 (2015)

    Article  ADS  Google Scholar 

  26. J.-Y. Vinet, Reducing thermal effects in mirrors of advanced gravitational wave interferometric detectors. Class. Quantum Gravity 24, 3897–3910 (2007)

    Article  ADS  Google Scholar 

  27. K. Dupraz, K. Cassou, A. Martens, F. Zomer, The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities. Opt. Commun. 353, 178–183 (2015)

    Article  ADS  Google Scholar 

  28. W.P. Putnam, D.N. Schimpf, G. Abram, F.X. Kärtner, Bessel-Gauss beam enhancement cavities for high-intensity applications. Opt. Express 20, 24429–24443 (2012)

    Article  ADS  Google Scholar 

  29. D.N. Schimpf, J. Schulte, W.P. Putnam, F.X. Kärtner, Generalizing higher-order Bessel-Gauss beams: analytical description and demonstration. Opt. Express 20, 26852–26867 (2012)

    Article  ADS  Google Scholar 

  30. D.N. Schimpf, W.P. Putnam, M.D.W. Grogan, S. Ramachandran, F.X. Kärtner, Radially polarized Bessel-Gauss beams: decentered Gaussian beam analysis and experimental verification. Opt. Express 21, 18469 (2013)

    Article  ADS  Google Scholar 

  31. M. Lax, W.H. Louisell, W.B. McKnight, From Maxwell to paraxial wave optics. Phys. Rev. A 11, 1365–1370 (1975)

    Article  ADS  Google Scholar 

  32. F. Zomer, V. Soskov, A. Variola, On the nonparaxial modes of twodimensional nearly concentric resonators. Appl. Opt. 46, 6859–6866 (2007)

    Article  ADS  Google Scholar 

  33. H. Laabs, A.T. Friberg, Nonparaxial eigenmodes of stable resonators. IEEE J. Quantum Electron. 35, 198–207 (1999)

    Article  ADS  Google Scholar 

  34. P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, R. Poprawe, Innoslab amplifiers. IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015)

    Article  Google Scholar 

  35. W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, Heating by optical absorption and the performance of interferometric gravitational-wave detectors. Phys. Rev. A 44, 7022–7036 (1991)

    Article  ADS  Google Scholar 

  36. P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Compact diode-pumped 1.1 kWYb:YAGInnoslab femtosecond amplifier. Opt. Lett. 35, 4169–4171 (2010)

    Article  ADS  Google Scholar 

  37. J.-P. Negel, A. Voss, M.A. Ahmed, D. Bauer, D. Sutter, A. Killi, T. Graf, 1.1 kW Average output power from a thin-disk multipass amplifier for ultrashort laser pulses. Opt. Lett. 38, 5442 (2013)

    Article  ADS  Google Scholar 

  38. T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35, 94–96 (2010)

    Article  ADS  Google Scholar 

  39. P. Hello, J.-Y. Vinet, Analytical models of transient thermoelastic deformations of mirrors heated by high power CW laser beams. J. de Phys. 51, 2243–2261 (1990)

    Article  Google Scholar 

  40. J.Y. Vinet, P. Hello, C.N. Man, A. Brillet, A high accuracy method for the sumulation of non-ideal optical cavities. J. de Phys. 2, 1287–1303 (1992)

    ADS  Google Scholar 

  41. J.Y. Vinet, P. Hello, Matrix simulation of optical cavities. J. Mod. Opt. 40, 1981–1993 (1993)

    Article  ADS  Google Scholar 

  42. J.D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB, vol. 199 (Press monograph, SPIE, Bellingham, Washington, 2010)

    Google Scholar 

  43. K.-X. Sun, R.L. Byer, All-reflective Michelson, Sagnac, and Fabry- Perot interferometers based on grating beam splitters. Opt. Lett. 23, 567 (1998)

    Article  ADS  Google Scholar 

  44. T. Clausnitzer, E.-B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, A. Duparré, Ultra low-loss low-efficiency diffraction gratings. Opt. Express 13, 4370 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Carstens .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carstens, H. (2018). Megawatt-Level Average Power Enhancement Cavities for Ultrashort Pulses. In: Enhancement Cavities for the Generation of Extreme Ultraviolet and Hard X-Ray Radiation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94009-0_4

Download citation

Publish with us

Policies and ethics