Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 336 Accesses

Abstract

This chapter deals with the design of high-power enhancement cavities for ultrashort pulses. In Sect. 3.1, design goals for high-power enhancement cavities are developed. Three example cavities are discussed in Sect. 3.2. They can be employed for applications such as high-harmonic generation or inverse-Compton scattering, whose specific requirements are discussed in Sect. 3.3. One important aspect for all these applications is robustness against perturbations. In Sect. 3.4, a metric for the misalignment sensitivity of enhancement cavities is introduced and investigated for the three cavity designs. The chapter closes with a discussion about the possibilities of astigmatic compensation in enhancement cavities in Sect. 3.5 with purely reflective optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Lilienfein, H. Carstens, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, A. Apolonski, F. Krausz, I. Pupeza, Balancing of thermal lenses in enhancement cavities with transmissive elements. Opt. Lett. 40, 843–846 (2015)

    Article  ADS  Google Scholar 

  2. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005)

    Article  ADS  Google Scholar 

  3. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z.A. Alahmed, A.M. Azzeer, A. Tünnermann, T.W. Hänsch, F. Krausz, Power scaling of a high-repetition-rate enhancement cavity. Opt. Lett. 35, 2052–2054 (2010)

    Article  ADS  Google Scholar 

  4. R.M. Wood, Laser-Induced Damage of Optical Materials. Series in Optics and Optoelectronics (Institute of Physics, Bristol, 2003)

    Google Scholar 

  5. S.J. Habraken, G. Nienhuis, Modes of a twisted optical cavity. Phys. Rev. A 75, 033819 (2007)

    Article  ADS  Google Scholar 

  6. J. Weitenberg, P. Rußbüldt, T. Eidam, I. Pupeza, Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity. Opt. Express 19, 9551–9561 (2011)

    Article  ADS  Google Scholar 

  7. J. Weitenberg, P. Rußbüldt, I. Pupeza, T. Udem, H.-D. Hoffmann, R. Poprawe, Geometrical on-axis access to high-finesse resonators by quasiimaging: a theoretical description. J. Opt. 17, 25609 (2015)

    Article  Google Scholar 

  8. I. Pupeza, M. Högner, J. Weitenberg, S. Holzberger, D. Esser, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, V. S. Yakovlev, Cavity-Enhanced High-Harmonic Generation with Spatially Tailored Driving Fields, Physical Review Letters 112 (2014)

    Google Scholar 

  9. D.N. Schimpf, J. Schulte, W.P. Putnam, F.X. Kärtner, Generalizing higher-order Bessel-Gauss beams: analytical description and demonstration. Opt. Express 20, 26852–26867 (2012)

    Article  ADS  Google Scholar 

  10. T.K. Allison, A. Cingöz, D.C. Yost, J. Ye, Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011)

    Article  ADS  Google Scholar 

  11. S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, I. Pupeza, Femtosecond enhancement cavities in thenonlinear regime. Phys. Rev. Lett. 115, 023902 (2015)

    Article  ADS  Google Scholar 

  12. J. Lee, D.R. Carlson, R.J. Jones, Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express 19, 23315–23326 (2011)

    Article  ADS  Google Scholar 

  13. D.C. Yost, A. Cingöz, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011)

    Article  ADS  Google Scholar 

  14. D.C. Yost, T.R. Schibli, J. Ye, Efficient output coupling of intracavity high-harmonic generation. Opt. Letters 33, 1099 (2008)

    Article  ADS  Google Scholar 

  15. Y.-Y. Yang, F. Süssmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S.L. Stebbings, M.F. Kling, Optimization and characterization of a highlyefficient diffraction nanograting for MHz XUV pulses. Opt. Express 19, 1954–1962 (2011)

    Article  ADS  Google Scholar 

  16. A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012)

    Article  ADS  Google Scholar 

  17. D.C. Yost, Development of an extreme ultraviolet frequency comb for precision spectroscopy. Ph.D. thesis (University of Colorado, Boulder, 2011)

    Google Scholar 

  18. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T.W. Hänsch, A. Apolonski, F. Krausz, E. Fill, Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photonics 7, 608–612 (2013)

    Article  ADS  Google Scholar 

  19. D. Esser, J. Weitenberg, W. Bröring, I. Pupeza, S. Holzberger, H.-D. Hoffmann, Laser-manufactured mirrors for geometrical output coupling of intracavity-generated high harmonics. Opt. Express 21, 26797 (2013)

    Article  ADS  Google Scholar 

  20. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, T.W. Hänsch, Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation. Opt. Express 16, 6233–6239 (2008)

    Article  ADS  Google Scholar 

  21. C.M. Heyl, S.N. Bengtsson, S. Carlström, J. Mauritsson, C.L. Arnold, A. L’Huillier, Noncollinear optical gating. New J. Phys. 16, 52001 (2014)

    Article  Google Scholar 

  22. W.J. Brown, F.V. Hartemann, Three-dimensional time and frequencydomain theory of femtosecond x-ray pulse generation through Thomson scattering. Phys. Rev. Spec. Top. - Accel. Beams 7, 060703 (2004)

    Google Scholar 

  23. Z. Huang, R.D. Ruth, Laser-electron storage ring. Phys. Rev. Lett. 80, 976–979 (1998)

    Article  ADS  Google Scholar 

  24. J. Riffkin, R.J. Loewen, R.D. Ruth, Apparatus, System, and Method for High Flux, Compact Compton X-ray Source. US 7,277,526 B2 (2007)

    Google Scholar 

  25. W.S. Graves, W. Brown, F.X. Kaertner, D.E. Moncton, MIT inverse Compton source concept. Compton Sour. X/gamma Rays: Phys. Appl. 608, S103–S105 (2009)

    Google Scholar 

  26. J. Bonis, R. Chiche, R. Cizeron, M. Cohen, E. Cormier, P. Cornebise, N. Delerue, R. Flaminio, D. Jehanno, F. Labaye, M. Lacroix, R. Marie, B. Mercier, C. Michel, Y. Peinaud, L. Pinard, C. Prevost, V. Soskov, A. Variola, F. Zomer, Non-planar four-mirror optical cavity for high intensity gamma ray flux production by pulsed laser beam Compton scattering off GeV-electrons. J. Instrum. 7, P01017 (2012)

    Article  Google Scholar 

  27. R.J. Loewen, J. Riffkin, R.D. Ruth, X-Ray Transmissive Optical Mirror Apparatus, US 7,242,748 B2 (2007)

    Google Scholar 

  28. R.J. Loewen, A Compact light source: design and technical feasibility study of a laser-electron storage ringx-ray source. Ph.D. thesis (Stanford University, Stanford, 2003)

    Google Scholar 

  29. T. Heupel, M. Weitz, T.W. Hänsch, Phase-coherent light pulses for atom optics and interferometry. Opt. Lett. 22, 1719 (1997)

    Article  ADS  Google Scholar 

  30. S. Breitkopf, T. Eidam, A. Klenke, L. von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, J. Limpert, A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities. Light: Sci. Appl. 3, e211 (2014)

    Article  Google Scholar 

  31. G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, The future is fibre accelerators. Nat. Photonics 7, 258–261 (2013)

    Article  ADS  Google Scholar 

  32. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, A. Tünnermann, Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt. Express 19, 255–260 (2011)

    Article  ADS  Google Scholar 

  33. T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Letters 35, 94–96 (2010)

    Article  ADS  Google Scholar 

  34. N. Hodgson, H. Weber, Misalignment sensitivity of stable resonators in multimode operation. J. Mod. Opt. 39, 1873–1882 (1992)

    Article  ADS  Google Scholar 

  35. R. Hauck, H.P. Kortz, H. Weber, Misalignment sensitivity of optical resonators. Appl. Opt. 19, 598–601 (1980)

    Article  ADS  Google Scholar 

  36. W.B. Joyce, B.C. DeLoach, Alignment of Gaussian beams. Appl. Opt. 23, 4187–4196 (1984)

    Article  ADS  Google Scholar 

  37. F. Kawazoe, R. Schilling, H. Lück, Eigenmode changes in a misaligned triangular optical cavity. J. Opt. 13, 55504 (2011)

    Article  ADS  Google Scholar 

  38. A. Fox, T. Li, Resonant modes in a maser interferometer. Bell Syst. Tech. J. 40, 453–488 (1961)

    Article  Google Scholar 

  39. T.J. Kane, R.L. Byer, Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt. Lett. 10, 65–67 (1985)

    Article  ADS  Google Scholar 

  40. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B: Lasers Opt. 31, 97–105 (1983)

    Article  ADS  Google Scholar 

  41. E. Black, An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79 (2001)

    Article  ADS  Google Scholar 

  42. H. Kogelnik, E. Ippen, A. Dienes, C. Shank, Astigmatically compensated cavities for CW dye lasers. IEEE J. Quantum Electron. 8, 373–379 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Carstens .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carstens, H. (2018). Design of High-Power Enhancement Cavities. In: Enhancement Cavities for the Generation of Extreme Ultraviolet and Hard X-Ray Radiation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94009-0_3

Download citation

Publish with us

Policies and ethics