Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 290 Accesses

Abstract

This chapter reviews the theoretical background necessary to understand the thesis, both its theoretical and experimental parts. In Sect. 2.1, Gaussian beams as a solution of the paraxial wave equation are introduced. Based on this, stable optical resonators and their eigenmodes are discussed in Sect. 2.2. The energy relations of passive optical resonators, so called enhancement cavities, in the steady-state follow in Sect. 2.3. As high powers play a central role in this thesis, thermal effects in laser optics are discussed in Sect. 2.4.1. The chapter closes with a summary of high-order harmonic generation in Sect. 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.E. Siegman, Lasers, 5th edn. (University Science Books, Mill Valley, 1986)

    Google Scholar 

  2. W.G. Nagourney, Quantum Electronics for Atomic Physics, Oxford Graduate Texts (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  3. H. Kogelnik, T. Li, Laser beams and resonators. Proc. IEEE 54, 1312–1329 (1966)

    Article  Google Scholar 

  4. S. Gigan, L. Lopez, N. Treps, A. Maître, C. Fabre, Image transmission through a stable paraxial cavity. Phys. Rev. A 72, 23804 (2005)

    Article  ADS  Google Scholar 

  5. A. Gerrard, J.M. Burch, Introduction to Matrix Methods in Optics, Wiley Series in Pure and Applied Optics (Wiley, London, 1975)

    Google Scholar 

  6. J.A. Arnaud, Degenerate optical cavities. Appl. Opt. 8, 189–195 (1969)

    Article  ADS  Google Scholar 

  7. J.A. Arnaud, Degenerate optical cavities. II: effect of misalignments. Appl. Opt. 8, 1909–1917 (1969)

    Article  ADS  Google Scholar 

  8. A.K. Mills, T.J. Hammond, M.H.C. Lam, D.J. Jones, XUV frequency combs via femtosecond enhancement cavities. J. Phys. B At. Mol. Opt. Phys. 45, 142001 (2012)

    Article  ADS  Google Scholar 

  9. S. de Silvestri, P. Laporta, V. Magni, Rod thermal lensing effects in solid-state laser ring resonators. Opt. Commun. 65, 373–376 (1988)

    Article  ADS  Google Scholar 

  10. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z.A. Alahmed, A.M. Azzeer, A. Tünnermann, T.W. Hänsch, F. Krausz, Power scaling of a high-repetition-rate enhancement cavity. Opt. Lett. 35, 2052–2054 (2010)

    Article  ADS  Google Scholar 

  11. H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, J. Weitenberg, D.C. Yost, A. Alghamdi, Z. Alahmed, A. Azzeer, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett. 39, 2595 (2014)

    Article  ADS  Google Scholar 

  12. J.-Y. Vinet, Reducing thermal effects in mirrors of advanced gravitational wave interferometric detectors. Class. l Quantum Gravity 24, 3897–3910 (2007)

    Article  ADS  Google Scholar 

  13. P. Hello, J.-Y. Vinet, Analytical models of thermal aberrations in massive mirrors heated by high power laser beams. Journal de Physique 51, 1267–1282 (1990)

    Article  Google Scholar 

  14. P. Hello, J.-Y. Vinet, Analytical models of transient thermoelastic deformations of mirrors heated by high power CW laser beams. Journal de Physique 51, 2243–2261 (1990)

    Article  Google Scholar 

  15. W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, Heating by optical absorption and the performance of interferometric gravitational-wave detectors. Phys. Rev. A 44, 7022–7036 (1991)

    Article  ADS  Google Scholar 

  16. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  17. M. Lewenstein, P. Balcou, M. Ivanov, A. L’Huillier, P. Corkum, Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  Google Scholar 

  18. Perelomov, Popov, Terent’ev, Ionization of atoms in an alternating electric field. Soviet Phys. JETP 1966, 924–934 (1966)

    Google Scholar 

  19. M.V. Ammosov, N.B. Delone, V.P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. JETP 64, 1191 (1986)

    Google Scholar 

  20. E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, P. Agostini, Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999)

    Article  ADS  Google Scholar 

  21. T.K. Allison, A. Cingöz, D.C. Yost, J. Ye, Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011)

    Article  ADS  Google Scholar 

  22. D.R. Carlson, J. Lee, J. Mongelli, E.M. Wright, R.J. Jones, Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett. 36, 2991–2993 (2011)

    Article  ADS  Google Scholar 

  23. S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, I. Pupeza, Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett. 115, 023902 (2015)

    Article  ADS  Google Scholar 

  24. A.-T. Le, T. Morishita, C.D. Lin, Improved Lewenstein model for high-order harmonic generation of atoms and molecules with scattering wave functions (2007), arXiv:0707.4192

  25. T. Morishita, A.-T. Le, Z. Chen, C.D. Lin, Accurate retrieval of structural information from laser-induced photoelectron and high-order harmonic spectra by few-cycle laser pulses. Phys. Rev. Lett. 100, 013903 (2008)

    Article  ADS  Google Scholar 

  26. S. Kazamias, S. Daboussi, O. Guilbaud, K. Cassou, D. Ros, B. Cros, G. Maynard, Pressure-induced phase matching in high-order harmonic generation. Phys. Rev. A 83, 063405 (2011)

    Article  ADS  Google Scholar 

  27. C.M. Heyl, J. Güdde, A. L’Huillier, U. Höfer, High-order harmonic generation with \(\upmu \)J laser pulses at high repetition rates. J. Phys. B At. Mol. Opt. Phys. 45, 74020 (2012)

    Google Scholar 

  28. P. Salières, A. L’Huillier, M. Lewenstein, Coherence control of high- order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995)

    Article  ADS  Google Scholar 

  29. M. Gaarde, F. Salin, E. Constant, P. Balcou, K. Schafer, K. Kulander, A. L’Huillier, Spatiotemporal separation of high harmonic radiation into two quantum path components. Phys. Rev. A 59, 1367–1373 (1999)

    Article  ADS  Google Scholar 

  30. T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl. Acad. Sci. USA 106, 10516–10521 (2009)

    Article  ADS  Google Scholar 

  31. A. Paul, E.A. Gibson, X. Zhang, A. Lytle, T. Popmintchev, X. Zhou, M.M. Murnane, I.P. Christov, H.C. Kapteyn, Phase-matching techniques for coherent soft X-ray generation. IEEE J. Quantum Electron. 42, 14–26 (2006)

    Article  ADS  Google Scholar 

  32. J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, A. Tünnermann, Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J. Phys. 16, 33022 (2014)

    Article  Google Scholar 

  33. J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, A. Tünnermann, 53 W average power few-cycle fiber laser system generating soft x rays up to the water window. Opt. Lett. 39, 5224–5227 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Carstens .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carstens, H. (2018). Theoretical Background. In: Enhancement Cavities for the Generation of Extreme Ultraviolet and Hard X-Ray Radiation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94009-0_2

Download citation

Publish with us

Policies and ethics