Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 285 Accesses

Abstract

Theodore Maiman allegedly said about his invention, the laser, that it is a “solution looking for a problem” [1]. Since its first demonstration in 1960, countless applications for lasers have been found in diverse fields of science and technology. Due to its outstanding properties, namely coherence, diffraction limited focusability, high brightness, and either high spectral purity or broadband pulsed operation, the laser has become an indispensable tool for imaging and spectroscopy. For example, with coherent illumination, transparent objects can be observed using phase contrast microscopy [2], and using laser scanning confocal microscopy (LSCM) the image quality of biological objects can be greatly enhanced [3]. While the foundations of confocal microscopy have been laid already in the 1950s, it became a standard technique only after the availability of high brightness laser sources [4]. In spectroscopy, the relative accuracy of atomic hydrogen measurements was improved using laser spectroscopy from \(10^{-7}\) to \(10^{-10}\) [5]. Later, using the so-called laser frequency comb spectroscopy, it was further improved to \(10^{-14}\) [5]. Here, the optical spectrum of the laser consists of many equidistant comb modes and can be described with two microwave frequencies \(f_0\) and \(f_\text {rep}, f_n = f_0 + n \cdot f_\text {rep}\) [6]. Thus, optical frequencies can be mapped to the frequency standard defined by cesium atomic clocks in one step, instead of complicated chains of frequency dividers, greatly reducing noise. Nowadays, optical frequency combs covering the visible, near infrared and mid-infrared range based on rare-earth doped lasers are commercially available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Garwin, T. Lincoln (eds.), A century of nature: twenty-one discoveries that changed science and the world (University of Chicago Press, Chicago, 2003)

    Google Scholar 

  2. F. Zernike, How i discovered phase contrast. Science 121, 345–349 (1955)

    Article  ADS  Google Scholar 

  3. M. Minsky, Microscopy apparatus, US3013467 A (7 Nov 1957)

    Google Scholar 

  4. J.B. Pawley (ed.), Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, New York, 2006)

    Google Scholar 

  5. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006)

    Article  ADS  Google Scholar 

  6. T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)

    Article  ADS  Google Scholar 

  7. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, M. Schlenker, Phase objects in synchrotron radiation hard x-ray imaging. J. Phys. D Appl. Phys. 29, 133 (1999)

    Article  ADS  Google Scholar 

  8. R. Fitzgerald, Phase-sensitive X-ray imaging. Phys. Today 53, 23 (2000)

    Article  Google Scholar 

  9. A. Momose, Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt. Express 11, 2303 (2003)

    Article  ADS  Google Scholar 

  10. M. Herrmann, M. Haas, U.D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H.A. Schüssler, T.W. Hänsch, T. Udem, Feasibility of coherent XUV spectroscopy on the 1S–2S transition in singly ionized helium. Phys. Rev. A 79 (2009)

    Google Scholar 

  11. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    Article  ADS  Google Scholar 

  12. A. Einstein, Zur Quantentheorie der Strahlung. Physikalische Zeitschrift 18 (1917)

    Google Scholar 

  13. C. Jauregui, J. Limpert, A. Tünnermann, High-power fibre lasers. Nat. Photonics 7, 861–867 (2013)

    Article  ADS  Google Scholar 

  14. H. Fattahi et al., Third-generation femtosecond technology. Optica 1, 45 (2014)

    Article  Google Scholar 

  15. P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, R. Poprawe, Innoslab amplifiers. IEEE J. Sel. Top. Quantum Electron. 21, 447–463 (2015)

    Article  Google Scholar 

  16. X.F. Li, A. L’Huillier, M. Ferray, L.A. Lompré, G. Mainfray, Multipleharmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989)

    Article  ADS  Google Scholar 

  17. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  18. M. Lewenstein, P. Balcou, M. Ivanov, A. L’Huillier, P. Corkum, Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  Google Scholar 

  19. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O.D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S.E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M.M. Murnane, H.C. Kapteyn, Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Spielmann, N.H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, Generation of coherent X-rays in the water window using 5-femtosecond laser pulses. Science 278, 661–664 (1997)

    Article  ADS  Google Scholar 

  21. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Single-cycle nonlinear optics. Science 320, 1614–1617 (2008)

    Article  ADS  Google Scholar 

  22. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, Z. Chang, Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891 (2012)

    Article  ADS  Google Scholar 

  23. T. Brabec, F. Krausz, Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)

    Article  ADS  Google Scholar 

  24. A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012)

    Article  ADS  Google Scholar 

  25. Z.-C. Yan, W. Nörtershäuser, G.W.F. Drake, High precision atomic theory for Li and Be+: QED shifts and isotope shifts. Phys. Rev. Lett. 100, 243002 (2008)

    Article  ADS  Google Scholar 

  26. C.J. Campbell, A.G. Radnaev, A. Kuzmich, Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011)

    Article  ADS  Google Scholar 

  27. A.D. Panov, Quantitative conversion spectroscopy of the ultrasoft isomeric transition of uranium-235 and the electronic structure of uranium oxides. J. Exp. Theor. Phys. 85, 313–324 (1997)

    Article  ADS  Google Scholar 

  28. S. Passlack, S. Mathias, O. Andreyev, D. Mittnacht, M. Aeschlimann, M. Bauer, Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J. Appl. Phys. 100, 24912 (2006)

    Article  Google Scholar 

  29. M.I. Stockman, M.F. Kling, U. Kleineberg, F. Krausz, Attosecond nanoplasmonic-field microscope. Nat. Photonics 1, 539–544 (2007)

    Article  ADS  Google Scholar 

  30. S.H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggenmos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M.I. Stockman, M.F. Kling, U. Kleineberg, Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses. Appl. Phys. Lett. 100, 51904 (2012)

    Article  ADS  Google Scholar 

  31. T. Rohwer, S. Hellmann, M. Wiesenmayer, C. Sohrt, A. Stange, B. Slomski, A. Carr, Y. Liu, L.M. Avila, M. Kalläne, S. Mathias, L. Kipp, K. Rossnagel, M. Bauer, Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011)

    Article  ADS  Google Scholar 

  32. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  33. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005)

    Article  ADS  Google Scholar 

  34. R.J. Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005)

    Article  ADS  Google Scholar 

  35. A.K. Mills, T.J. Hammond, M.H.C. Lam, D.J. Jones, XUV frequency combs via femtosecond enhancement cavities. J. Phys. B At. Mol. Opt. Phys. 45, 142001 (2012)

    Article  ADS  Google Scholar 

  36. A. Börzsönyi, R. Chiche, E. Cormier, R. Flaminio, P. Jojart, C. Michel, K. Osvay, L. Pinard, V. Soskov, A. Variola, F. Zomer, External cavity enhancement of picosecond pulses with 28,000 cavity finesse. Appl. Opt. 52, 8376 (2013)

    Article  ADS  Google Scholar 

  37. W.J. Brown, F.V. Hartemann, Three-dimensional time and frequency domain theory of femtosecond x-ray pulse generation through Thomson scattering. Phys. Rev. Spec. Top. Accel. Beams 7 (2004)

    Google Scholar 

  38. Z. Huang, R.D. Ruth, Laser-electron storage ring. Phys. Rev. Lett. 80, 976–979 (1998)

    Article  ADS  Google Scholar 

  39. J. Riffkin, R.J. Loewen, R.D. Ruth, Apparatus, System, and Method for High Flux, Compact Compton X-ray source, US 7,277,526 B2 (2007)

    Google Scholar 

  40. W.S. Graves, W. Brown, F.X. Kaertner, D.E. Moncton, MIT inverse Compton source concept. Compton Sour. X/gamma Rays Phys. Appl. 608, S103–S105 (2009)

    Google Scholar 

  41. A. Variola, J. Brasile, C. Bruni, R. Chehab, R. Chiche, R. Cizeron, F. Couchot, Y. Fedala, J. Haissinski, M. Jacquet, D. Jehanno, M. Lacroix, P. Lepercq, B. Mouton, R. Roux, V. Soskov, A. Vivoli, F. Zomer, The LAL Compton program. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 608, S83–S86 (2009)

    Article  ADS  Google Scholar 

  42. H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, Large-mode enhancement cavities. Opt. Express 21, 11606 (2013)

    Article  ADS  Google Scholar 

  43. H. Carstens, N. Lilienfein, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tünnermann, J. Weitenberg, D.C. Yost, A. Alghamdi, Z. Alahmed, A. Azzeer, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett. 39, 2595 (2014)

    Article  ADS  Google Scholar 

  44. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z.A. Alahmed, A.M. Azzeer, A. Tünnermann, T.W. Hänsch, F. Krausz, Power scaling of a high-repetition-rate enhancement cavity. Opt. Lett. 35, 2052–2054 (2010)

    Article  ADS  Google Scholar 

  45. H. Carstens, M. Högner, T. Saule, S. Holzberger, N. Lilienfein, A. Guggenmos, C. Jocher, T. Eidam, D. Esser, V. Tosa, V. Pervak, J. Limpert, A. Tünnermann, U. Kleineberg, F. Krausz, I. Pupeza, High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Carstens .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carstens, H. (2018). Introduction. In: Enhancement Cavities for the Generation of Extreme Ultraviolet and Hard X-Ray Radiation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94009-0_1

Download citation

Publish with us

Policies and ethics