Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

In this chapter, a brief introduction to the theory of fractional calculus is presented. We start with a historical perspective of the theory, with a strong connection with the development of classical calculus (Sect. 1.1). Then, in Sect. 1.2, we review some definitions and properties about a few special functions that will be needed. We end with a review on fractional integrals and fractional derivatives of noninteger order and with some formulas of integration by parts, involving fractional operators (Sect. 1.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel NH (1823) Solution de quelques problèmes à l’aide d’intégrales définies. Mag Naturv 1(2):1–127

    Google Scholar 

  2. Agrawal OP (2010) Generalized variational problems and Euler–Lagrange equations. Comput Math Appl 59(5):1852–1864

    Article  MathSciNet  Google Scholar 

  3. Almeida R, Malinowska AB (2013) Generalized transversality conditions in fractional calculus of variations. Commun Nonlinear Sci Numer Simul 18(3):443–452

    Article  MathSciNet  Google Scholar 

  4. Almeida R, Torres DFM (2013) An expansion formula with higher-order derivatives for fractional operators of variable order. Sci World J. Art. ID 915437, 11 pp

    Google Scholar 

  5. Almeida R, Pooseh S, Torres DFM (2015) Computational methods in the fractional calculus of variations. Imperial College Press, London

    Book  Google Scholar 

  6. Atanacković TM, Pilipovic S (2011) Hamilton’s principle with variable order fractional derivatives. Fract Calc Appl Anal 14:94–109

    Article  MathSciNet  Google Scholar 

  7. Caputo M (1967) Linear model of dissipation whose \(Q\) is almost frequency independent-II. Geophys J R Astr Soc 13:529–539

    Article  Google Scholar 

  8. Coimbra CFM (2003) Mechanics with variable-order differential operators. Ann Phys 12(11–12):692–703

    Article  MathSciNet  Google Scholar 

  9. Fu Z-J, Chen W, Yang H-T (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66

    Article  MathSciNet  Google Scholar 

  10. Herrmann R (2013) Folded potentials in cluster physics–a comparison of Yukawa and Coulomb potentials with Riesz fractional integrals. J Phys A 46(40):405203. 12 pp

    Article  MathSciNet  Google Scholar 

  11. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific Publishing, River Edge, NJ

    Book  Google Scholar 

  12. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  13. Klimek M (2001) Fractional sequential mechanics - models with symmetric fractional derivative. Czechoslovak J Phys 51(12):1348–1354

    Article  MathSciNet  Google Scholar 

  14. Kumar K, Pandey R, Sharma S (2017) Comparative study of three numerical schemes for fractional integro-differential equations. J Comput Appl Math 315:287–302

    Article  MathSciNet  Google Scholar 

  15. Li G, Liu H (2016) Stability analysis and synchronization for a class of fractional-order neural networks. Entropy 18:55. 13 pp

    Article  Google Scholar 

  16. Li CP, Chen A, Ye J (2011) Numerical approaches to fractional calculus and fractional ordinary differential equation. J Comput Phys 230(9):3352–3368

    Article  MathSciNet  Google Scholar 

  17. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial college press, London

    Book  Google Scholar 

  18. Malinowska AB, Torres DFM (2010) Fractional variational calculus in terms of a combined Caputo derivative. In: Podlubny I, Vinagre Jara BM, Chen YQ, Feliu Batlle V, Tejado Balsera I (eds) Proceedings of FDA’10, The 4th IFAC workshop on fractional differentiation and its applications. Badajoz, Spain 18–20 Oct 2010. Article no. FDA10-084, 6 pp

    Google Scholar 

  19. Malinowska AB, Odzijewicz T, Torres DFM (2015) Advanced methods in the fractional calculus of variations. Springer briefs in applied sciences and technology. Springer, Cham

    Book  Google Scholar 

  20. Malinowska AB, Torres DFM (2011) Fractional calculus of variations for a combined Caputo derivative. Fract Calc Appl Anal 14(4):523–537

    Article  MathSciNet  Google Scholar 

  21. Malinowska AB, Torres DFM (2012) Introduction to the fractional calculus of variations. Imperical Coll Press, London

    Book  Google Scholar 

  22. Malinowska AB, Torres DFM (2012) Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl Math Comput 218(9):5099–5111

    MathSciNet  MATH  Google Scholar 

  23. Malinowska AB, Torres DFM (2012) Towards a combined fractional mechanics and quantization. Fract Calc Appl Anal 15(3):407–417

    Article  MathSciNet  Google Scholar 

  24. Odzijewicz T, Malinowska AB, Torres DFM (2012) Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr Appl Anal. Art. ID 871912, 24 pp

    Google Scholar 

  25. Odzijewicz T, Malinowska AB, Torres DFM (2012) Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal 75(3):1507–1515

    Article  MathSciNet  Google Scholar 

  26. Odzijewicz T, Malinowska AB, Torres DFM (2013) Fractional variational calculus of variable order. Advances in harmonic analysis and operator theory. Operator Theory: Advances and Applications. Birkhäuser/Springer, Basel, pp 291–301

    Chapter  Google Scholar 

  27. Odzijewicz T, Malinowska AB, Torres DFM (2013) Noether’s theorem for fractional variational problems of variable order. Cent Eur J Phys 11(6):691–701

    Google Scholar 

  28. Odzijewicz T, Malinowska AB, Torres DFM (2013) A generalized fractional calculus of variations. Control Cybern 42(2):443–458

    MathSciNet  MATH  Google Scholar 

  29. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  30. Oliveira EC, Machado JAT (2014) Review of definitions for fractional derivatives and integral. A Math Probl Eng 2014:238–459 6 pp

    MathSciNet  Google Scholar 

  31. Pinto C, Carvalho ARM (2014) New findings on the dynamics of HIV and TB coinfection models. Appl Math Comput 242:36–46

    MathSciNet  MATH  Google Scholar 

  32. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego, CA

    MATH  Google Scholar 

  33. Ramirez LES, Coimbra CFM (2011) On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys D 240(13):1111–1118

    Article  MathSciNet  Google Scholar 

  34. Ross B (1977) The development of fractional calculus 1695–1900. Historia Mathematica 4:75–89

    Article  MathSciNet  Google Scholar 

  35. Samko SG (1995) Fractional integration and differentiation of variable order. Anal Math 21(3):213–236

    Article  MathSciNet  Google Scholar 

  36. Samko SG, Ross B (1993) Integration and differentiation to a variable fractional order. Integr Transform Spec Funct 1(4):277–300

    Article  MathSciNet  Google Scholar 

  37. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Translated from the Russian original. Gordon and Breach, Yverdon (1987)

    Google Scholar 

  38. Sheng H, Sun HG, Coopmans C, Chen YQ, Bohannan GW (2011) A physical experimental study of variable-order fractional integrator and differentiator. Eur Phys J 193(1):93–104

    Google Scholar 

  39. Sierociuk D, Skovranek T, Macias M, Podlubny I, Petras I, Dzielinski A, Ziubinski P (2015) Diffusion process modeling by using fractional-order models. Appl Math Comput 257(15):2–11

    Google Scholar 

  40. Sun HG, Chen W, Chen YQ (2009) Variable order fractional differential operators in anomalous diffusion modeling. Phys A 388(21):4586–4592

    Article  Google Scholar 

  41. Sun H, Chen W, Li C, Chen Y (2012) Finite difference schemes for variable-order time fractional diffusion equation. Int J Bifur Chaos Appl Sci Eng 22(4):1250085. 16 pp

    Article  MathSciNet  Google Scholar 

  42. Sun H, Hu S, Chen Y, Chen W, Yu Z (2013) A dynamic-order fractional dynamic system. Chin Phys Lett 30(4):046601. 4 pp

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim F. M. Torres .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almeida, R., Tavares, D., Torres, D.F.M. (2019). Fractional Calculus. In: The Variable-Order Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-94006-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94006-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94005-2

  • Online ISBN: 978-3-319-94006-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics