The Concept of Teaching Modeling and Simulation of Manufacturing Systems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 792)


The paper describes advantages of teaching and application of modeling manufacturing systems. Two paradigms of modeling: Discrete Event (DE) and System Dynamics (SD) are briefly presented and compared. A few possibilities of teaching these approaches worldwide are presented. Furthermore, a combined way of teaching these two methods, with a focus on the modeling and simulating selected basic processes of manufacturing systems, is proposed in briefly described exercises. The concept provides division of this method depending on student’s education level.


Discrete Event System Dynamics Modeling manufacturing systems Teaching 


  1. 1.
    Borshchev, A., Filippov, A.: From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools. In: The 22nd International Conference of the System Dynamics Society, Oxford, England (2004)Google Scholar
  2. 2.
    Wrobel-Lachowska, M., Wisniewski, Z., Polak-Sopinska, A.: The role of the lifelong learning in logistics 4.0. In: Andre, T. (ed.) Advances in Human Factors in Training, Education, and Learning Sciences, pp. 402–409. Springer International Publishing, Cham (2018)Google Scholar
  3. 3.
    Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B.: Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung Technologien Migration. Springer Fachmedien Wiesbaden, Wiesbaden (2014)Google Scholar
  4. 4.
    Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems (2008)Google Scholar
  5. 5.
    Ullrich, O., Lückerath, D.: An introduction to discrete-event modeling and simulation. Simul. Notes Eur. 27(1), 9–16 (2017)CrossRefGoogle Scholar
  6. 6.
    Seewaldt, M., Nagel, J., Geckler, D., Bracht, U.: Energy-oriented material flow simulation as a contribution to automotive industry 4.0. Simul. Notes Eur. 27(2), 61–66 (2017)CrossRefGoogle Scholar
  7. 7.
    Rabe, M., Deininger, M.: Discrete event simulation of modular production system models using Petri Nets. In: Rabe, M., Clausen, U. (eds.) Simulation in Production and Logistics, pp. 387–396. Fraunhofer IRB Verlag, Stuttgart (2015)Google Scholar
  8. 8.
    Völker, S., Schmidt, P.-M.: Simulationsbasierte Optimierung von Produktions- und Logistiksystemen mit Tecnomatix Plant Simulation. In: Zülch, G., Stock, P. (eds.) Intergrationsaspekte der Simulation: Technik, Organisation und Personal, pp. 93–100. KIT Scientific Publishing, Karlsruhe (2010)Google Scholar
  9. 9.
    Bouloiz, H., Garbolino, E., Tkiouat, M.: Modeling of an organizational environment by system dynamics and fuzzy logic. Open J. Saf. Sci. Technol. 3, 96–104 (2013)CrossRefGoogle Scholar
  10. 10.
    Ossimitz, G., Mrotzek, M.: The basics of system dynamics: discrete vs. continuous modelling of time. In: Proceedings of the 26th International Conference of the System Dynamics Society, Athens, Greece, pp. 2416–2423 (2008)Google Scholar
  11. 11.
    Orcun, S., Uzsoy, R., Kempf, K.: Using system dynamics simulations to compare capacity models for production planning. In: Proceedings - Winter Simulation Conference, pp. 1855–1862 (2006)Google Scholar
  12. 12.
    Georgiadis, P., Michaloudis, C.: Real-time production planning and control system for job-shop manufacturing: a system dynamics analysis. Eur. J. Oper. Res. 216, 94–104 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Özbayrak, M., Papadopoulou, T.C., Akgun, M.: Systems dynamics modelling of a manufacturing supply chain system. Simul. Model. Pract. Theory 15, 1338–1355 (2007)CrossRefGoogle Scholar
  14. 14.
    Piewthongngam, K., Vijitnopparat, P., Pathumnakul, S., Chumpatong, S., Duangjinda, M.: System dynamics modelling of an integrated pig production supply chain. Biosyst. Eng. 127, 24–40 (2014)CrossRefGoogle Scholar
  15. 15.
    Kiyani, B., Shahnazari Shahrezaei, P., Kazemipoor, H., Fallah, M.: Dynamic modeling to determine production strategies in order to maximize net present worth in small and medium size companies. J. Ind. Eng. Int. 6, 51–64 (2010)Google Scholar
  16. 16.
    Wenzel, S., Peter, T.: Simulation zur Sicherstellung der Wettbewerbsfähigkeit - Ergebnisse einer Umfrage zur Simulation in Produktion und Logistik. In: Friedewald, A., Lödding, H. (eds.) Produzieren in Deutschland - Wettbewerbsfähigkeit im 21. Jahrhundert, pp. 243–264. Gito, Berlin (2013)Google Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    University of Bergen - Master’s Programme in System Dynamics.
  21. 21.
    Raport o stanie sektora małych i średnich przedsiębiorstw w Polsce (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Management and Production EngineeringLodz University of TechnologyLodzPoland

Personalised recommendations