Advertisement

Fuzzy Model Evaluation of Vehicles Ergonomics and Its Influence on Occupational Diseases

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 792)

Abstract

The problems of synthesis of hybrid fuzzy decision rules of ergonomic level evaluation of vehicles and its influence to the drivers’ health condition has been reviewed in current article Our investigations show that the confidence in correctness of decision making in prediction of such diseases as osteochondrosis of the lumbar spine and prostitutes located in the level 0.8, and the early diagnosis of these diseases is carried out with confidence 0.9.

Keywords

Fuzzy hybrid mode confidence in the decisions The level of ergonomics occupational diseases 

References

  1. 1.
    Efremov, M.A., Korenevsky, N.A., Rodionov, O.V., Filist, S.A.: Forecasting of the onset, early and differential diagnosis of osteochondrosis of the lumbar spine based on fuzzy logic of decision-making. Syst. Anal. Manage. Biomed. Syst. 5(4), 939–942 (2006)Google Scholar
  2. 2.
    Kopteva, N.A., Korenevsky, N.A.: Forecasting and diagnosis of occupational diseases in workers of the agro-industrial complex, no. 2, pp. 14–16. West-nickname of the Kursk State Agricultural Academy (2008)Google Scholar
  3. 3.
    Korenevsky, N.A.: Use of fuzzy decision logic for medical expert systems. Med. Technol. 1, 33–35 (2015)Google Scholar
  4. 4.
    Korenevsky, N.A.: The method of synthesis of heterogeneous fuzzy rules for analysis and control of the state of biotechnical systems. In: News of the South-Western State University. Series: Management, Computer Science, Computer Science. Medical Instrument Making, vol. 2, pp. 99–103 (2013)Google Scholar
  5. 5.
    Korenevsky, N.A., Rutskoi, R.V., Dolzhenkov, S.D.: The method of forecasting and diagnosing the state of health on the basis of teams of fuzzy decisive rules. Syst. Anal. Manage. Biomed. Syst. 12(4), 905–909 (2013)Google Scholar
  6. 6.
    Korenevsky, N.A., Razumova, K.V.: Synthesis of teams of hybrid fuzzy models, estimating the state of complex systems. High Technol. 15(12), 31–40 (2014)Google Scholar
  7. 7.
    Korenevsky, N.A., Krupchatnikov, R.A., Al-Kasasbeh, R.T.: Theoretical bases of biophysics of acupuncture with applications in medicine, psychology and ecology based on fuzzy network models, 528 p. TNT, Stary Oskol (2013)Google Scholar
  8. 8.
    Korenevsky, N.A., Korostelev, A.N., Serebrovsky, V.V., Sapitonov, T.N.: Fuzzy assessment of the ergonomics of agricultural machines and its use in assessing the condition of workers in the agro-industrial complex. Bull. Kursk State Agricult. Acad. 1, 122–126 (2012)Google Scholar
  9. 9.
    Korenevsky, N.A., Serebrovsky, V.I., Govorukhina, T.N., Kopteva, N.A.: Forecasting and Diagnostics of Diseases Caused By Harmful Industrial and Environmental Factors on the Basis of Heterogeneous Non-Clear Models, 231p. Publishing house Kursk, Kursk (2012)Google Scholar
  10. 10.
    Korenevsky, N.A., Burmaka, A.A., Starodubtseva, L.V., Gorbatenko, S.A.: Estimation of ergonomics of vehicles based on odd hybrid models. Biotechnosphere 1(14), 50–54 (2012)Google Scholar
  11. 11.
    Korenevsky, N.A., Shortlifa, E., Korenevsky, O.N., Gadalov, V.N., Korovin, E.N., Serebrovsky, V.I.: Evaluation of ergonomics of biotechnical systems using fuzzy models. Med. Technol. 4, 4–6 (2013)Google Scholar
  12. 12.
    Korenevsky, N.A., Ryabkova, E.B.: Method for synthesizing fuzzy decision rules from information on the geometric structure of multidimensional data. Bull. Voronezh State Tech. Univ. 7(8), 128–137 (2011)Google Scholar
  13. 13.
    Korostelev, A.N., Korenevskii, N.A., Korostelev, A.H.: Use of heterogeneous fuzzy models for complex estimation of the level of human functional reserve. Bull. Voronezh State Tech. Univ. 7(8), 142–147 (2011)Google Scholar
  14. 14.
    Kotsar, A.G.: Development and research of methods and means for managing the prognosis, diagnosis, prophylaxis and treatment of chronic prostatitis, 147 p. PhD in 2008 Voronezh (2003)Google Scholar
  15. 15.
    Serebrovsky, V.I., Boytsov, A.V., Shutkin, A.N., Korenevskaya, S.N.: Synthesis of the decisive rules for assessing the level of psychoemotional tension and fatigue using two-dimensional classification spaces and vector algebra. News of the South-Western State University, vol. 5, no. 56, pp. 58–63 (2014)Google Scholar
  16. 16.
    Titov, V.S., Mishustin, V.N., Novikov, A.V., Korovin, E.N.: Classification of functional states and assessment of the level of psycho-emotional stress and fatigue based on hybrid fuzzy models. Med. Technol. 4, 11–14 (2013)Google Scholar
  17. 17.
    Chursin, G.V., Korenevsky, G.V., Burmaka, A.A., et al.: Predicting, early and differential national drivers of vehicle diseases using fuzzy models. Biomed. Radioelectron. 2, 54–63 (2010)Google Scholar
  18. 18.
    Chursin, G.V., Korenevsky, N.A., Korostelev, A.N., et al.: Complex estimation of ergonomic properties of vehicles based on fuzzy models and its use in problems of prediction and diagnosis of occupational diseases. Syst. Anal. Manage. Biomed. Syst. 9(1), 21–26 (2010)Google Scholar
  19. 19.
    Chursin, G.V., Korenevsky, N.A., Lukashov, M.I.: Fuzzy assessment of the role of physical fatigue in the recurrence of chronic diseases. In: System Analysis and Management in Biomedical Systems, vol. 8, no. 3, pp. 692–697 (2009)Google Scholar
  20. 20.
    Korenevskiy, N.A., Al-Kasasbeh, R.T., Ionescou, F., Alshamasin, M., Alkasasbeh, E., Smith, A.P.: Fuzzy determination of the human’s level of psycho-emotional. In: IFMBE Proceedings, vol. 40, pp. 213–216 (2013)Google Scholar
  21. 21.
    Korenevskiy, N.A., Al-Kasasbeh R.T., Ionescou, F., Alshamasin, M., Al-Kasasbeh, E., Smith A.P.: Fuzzy determination of the human’s level of psycho-emotional. In: Mega-Conference on Biomedical Engineering: Proceedings of the 4th International Conference of the Development of Biomedical Engineering, Ho Chi Minh City, Vietnam, 8–12 January 2012, pp. 354–357 (2012)Google Scholar
  22. 22.
    Korenevskiy, N.A., Gorbatenko, S.A., Krupchatnikov, R.A., Lukashov, M.I.: Design of network-based fuzzy knowledge bases for medical decision-making support systems. Biomed. Eng. 43(4), 187–190 (2009)Google Scholar
  23. 23.
    Al-Kasasbeh, R.T., Zaubi, M.A.A., Korenevskiy, N., Al-Shawawreh, F., Alshamasin, M.S., Ionescu, F.: A biotech measurement software system using controlled features for determining the level of psycho-emotional tension on man-machine system operators by bio-active points based on fuzzy logic measures. Int. J. Model. Identif. Control 22(4), 375–395 (2014)CrossRefGoogle Scholar
  24. 24.
    Al-Kasasbeh, R.T.: Biotechnical measurement and software system controlled features for determining the level of psycho-emotional tension on man–machine systems by fuzzy measures. Adv. Eng. Softw. 45, 137–143 (2012)CrossRefGoogle Scholar
  25. 25.
    Korenevskiy, N.A., Skopin, D.E., Al Kasasbeh, R.T., Kuzmin, A.A.: System for studying specific features of attention and memory. Biomed. Eng. 44(1), 32–35 (2010)CrossRefGoogle Scholar
  26. 26.
    Al-Kasasbeh, R.T., Salman, A.M., Florin, I., Korenevskiy, N.: Modelling and parameter estimation for operator intelligence in man-machine systems. IJMIC Int. J. Model. Identif. Control 15(1), 69–85 (2012). ISSN online 1746–6180CrossRefGoogle Scholar
  27. 27.
    Al-Kasasbeh, R.T.: Software features for the estimation of an operators’ group activity in man-machine system. Adv. Eng. Softw. 42, 547–554 (2011). ISSN 0965-9978CrossRefGoogle Scholar
  28. 28.
    Al-Kasasbeh, R.T., Ionescou, F., Mukattash, A., Btoush, R.: Confidence estimates of operators’ group activity in man-machine systems. Jordan J. Mech. Ind. Eng. 4(2), 324–329 (2010). ISSN 1995–6665Google Scholar
  29. 29.
    Al-Kasasbeh, R.T., El-tous, Y.: Selection of artifacts in EEG-signals using Kullback information. Eng. Sci. J. 22, 69–77 (2006). ISSN 1687-0530Google Scholar
  30. 30.
    Al-Kasasbeh, R.T., Lvov, B.V.: Classification of EEG signals with artifacts, based on fractal dimension analysis, wavelet transform and neural network. Dirasat J. 32, 78–90 (2005). ISSN 1560-4551Google Scholar
  31. 31.
    Al-Kasasbeh, R.T., Shapovalnikov, R.A., Skopin, D.E., Shamaseen, M.S.: Diagnosis of fetal state by ECG detection. Biomed. Eng. 43(2), 84–89 (2009). ISSN 1573–8256Google Scholar
  32. 32.
    Al-Kasasbeh, R.T., Shamaseen, M.S., Skopin, D.E., Barbarawi, O., Geppener, V.V.: Automated detection of artifacts in electroencephalography signals using a linear prediction model. Biomed. Eng. 43(1), 31–35 (2009). ISSN 1573–8256Google Scholar
  33. 33.
    Al-Kasasbeh, R.T., Shamaseen, M.S., Skopin, D.E.: Automated detection and selection of artifacts in encephalography signals. Biomed. Eng. 42(6), 292–301 (2008). ISSN 1573–8256Google Scholar
  34. 34.
    Al-Kasasbeh, R.T., Shepovalnikov, R.A.: Two – dimensional representation spatial structure changes in brain bioelectric potential field. Appl. Bionics Biomech. J. 4(1) (2007). ISSN 1754–2103Google Scholar
  35. 35.
    Al-Kasasbeh, R.T., Lvov, B.V.: Detection of eye movement and muscle artifact in EEG of normal subjects by classification of fractal dimension dynamics. Dirasat Int. J. 33 (2006). ISSN 1560-4551Google Scholar
  36. 36.
    Al-Kasasbeh, R., Korenevskiy, N., Ionescou, F., Alshamasin, M., Kuzmin, A.: Synthesis of fuzzy logic for prediction and medical diagnostics by energy characteristics of acupuncture points. J. Acupunct. Meridian Stud. 4(3), 175–182 (2011)CrossRefGoogle Scholar
  37. 37.
    Al-Kasasbeh, R.T., Korenevskiy, N.A., Ionescu, F., Kuzmin A.A.: Synthesis of combined fuzzy decision rules based on the exploration analysis data. In: Proceedings of 4th IAFA International Conference on Interdisciplinary Approaches in Fractal Analysis, pp. 71–78, Bucharest, Romania (2009). ISSN 2066-4451Google Scholar
  38. 38.
    Korenevsky, N.A., Krupchatnikov, R.A., Al-Kasasbeh, R.T.: Theoretical fundamentals of biophysics of acupuncture with applications in medicine, psychology and ecology on the basis of indistinct network models. Stary Oskol, TNT (2013). ISBN 978–5-94178-398-4Google Scholar
  39. 39.
    Al-Kasasbeh, R.T., Korenevskiy, N.A., Ionescu, F., Alshamasin, M.: Prediction and prenosological diagnostics of gastrointestinal tract diseases based on energy characteristics of acupuncture points and fuzzy logic. In: International Conference on Bioinformatics and Biomedical Technology, Sanya, China, pp. 307–312 (2011)Google Scholar
  40. 40.
    Korenevskiy, N.A., Al-Kasasbeh, R.T., Ionecou, F.: Prediction and prenosological diagnostics of heart diseases based on energy characteristics of acupuncture points and fuzzy logic. Comput. Methods Biomech. Biomed. Eng. 15(7), 681–689 (2011)Google Scholar
  41. 41.
    Korenevskiy, N.A., Al-Kasasbeh, R.T., Alshamasin, M., Ionescou, F., Smith, A.: Prediction of gastric ulcers based on the change in electrical resistance of acupuncture points using fuzzy logic decision-making. Comput. Methods Biomech. Biomed. Eng. 16(3), 302–313 (2013)CrossRefGoogle Scholar
  42. 42.
    Korenevskiy, N., Alshamasin, M., Al-kasasbeh, R.T., Anatolevich, K.R., Ionescu, F.: Prediction and prenosological diagnosis of stomach diseases based on energy characteristics of acupuncture points and fuzzy logic. Int. J. Model. Identif. Control 23(1), 55–67 (2015)CrossRefGoogle Scholar
  43. 43.
    Al-Kasasbeh, R., Korenevskiy, N., Ionescu, F., Alshamasin, M., Smith, A.P., Alwadie, A., Aljbour, S.: Application of fuzzy analysis with the energy condition of bioactive points to the prediction and diagnosis of gastrointestinal tract diseases. Int. J. Biomed. Eng. Technol. 11(2) (2013). ISSN online 1752–6426, ISSN print 1752-6418CrossRefGoogle Scholar
  44. 44.
    Korenevskiy, N.A., Ionescu, Fl., Kuzmin, A.A., Al-Kasasbeh, R.T.: Synthesis of the combined fuzzy rules for medical applications with using tools of exploration analysis. J. Biomed. Electron. 5, 65–76 (2009). ISSN 1560–4136Google Scholar
  45. 45.
    Korenevskiy, N.A., Ionescu, Fl., Kuzmin, A.A., Al-Kasasbeh, R.T.: Prediction of occurrence, aggravation and pre-nosological diagnostics of osteochondrosis of a backbone’s lumbar region with use of reflexology methods. J. Biomed. Electron 5, 60–64 (2009). ISSN 1560–4136Google Scholar
  46. 46.
    Al-Kasasbeh, R., Korenevskiy, N., Alshamasin, M.: Bioengineering system for prediction and early prenosological diagnostics of stomach diseases based on energy characteristics of bioactive points with fuzzy logic. In: 2nd Biomedical Engineering Conference and Expo, 30 November–01 December 2015, San Antonio, USA (2015)Google Scholar
  47. 47.
    Al-Kasasbeh, R.T., Ionescu, F., Korenevskiy, N.A., Mahdi, S.: Prediction and prenosological diagnostics of gastrointestinal tract diseases based on energy characteristic of acupuncture points and fuzzy logic. In: Proceedings of 3rd International Conference on Bioinformatics and Biomedical Technology, Sanya, China, 25–27 March 2011 (2011). 978-1-4244-9658-7/11/$26.00 CGoogle Scholar
  48. 48.
    Al-Kasasbeh, R.T., Ionescu, F., Korenevskiy, N.A., Mahdi, S.: Prediction and prenosological diagnostics of gastrointestinal tract diseases based on energy characteristic of acupuncture points and fuzzy logic. In: Proceedings of 3rd International Conference on Bioinformatics and Biomedical Technology, Sanya, China, 25–27 March 2011 (2011)Google Scholar
  49. 49.
    Korenevskiy, N.A., Ionescu, Fl., Kuzmin, A.A., Al-Kasasbeh, R.T.: The prognosis of early and differential diagnostics of diseases on the energetic dicbalance of Acupuncture points and fuzzy logic. In: Proceedings of 2009 International Conference Medical–Ecological Information Technologies, 26–29 May Kursk-Russia, pp. 155–169 (2009). ISBN 978-5-7681-0470-2Google Scholar
  50. 50.
    Kobzar, E.U., Al-Kasasbeh, R.T.: Prediction of occurrence of osteocchonrosis of backbone’s lumbar region. In: Proceedings of 2009 International Conference on Medical–Ecological Information Technologies, 26–29 May Kursk-Russia, pp. 36–39 (2009). ISBN 978-5-7681-0470-2Google Scholar
  51. 51.
    Korenevskiy, N.A., Al -Kasasbeh, R.T., Ionecou, F.: Prediction and prenosological diagnostics of heart diseases based on energy characteristics of acupuncture points and fuzzy logic. Comput. Methods Biomech. Biomed. Eng. 15(7), 681–689 (2012)Google Scholar
  52. 52.
    Korenevskiy, N.A., Al-Kasasbeh R.T., Ionescu F., Arghir, S.: Determining the level of psycho-emotional tension on a heterogeneous rules of fuzzy output. In: Proceedings of the 18th International Conference on Control Systems and Computer Science (CSCS - 18), 24–27 May 2011, Bucharest, Romania, pp. 901–904. Politechnica Press (2011)Google Scholar
  53. 53.
    Korenevskiy, N., Al-Kasasbeh, R.T., Ionescou, F., Alshamasin, M., Alkasasbeh, E., Smith, A.P.: Fuzzy determination of the human’s level of psycho-emotional. In: Proceedings of the 4th International Conference on the Development of Biomedical Engineering, BME2012, Ho Chi Minh City, Vietnam, pp. 354–357 (2012)Google Scholar
  54. 54.
    Al-Kasasbeh, R.T., Korenevskiy, N., Alshamasin, M., Ionescou, F., Smith, A.P.: Prediction of gastric ulcers based on the change in electrical resistance of acupuncture points using fuzzy logic decision making. Comput. Methods Biomech. Biomed. Eng., 1–12 (2012).  https://doi.org/10.1080/10255842.2011.618926
  55. 55.
    Al-Kasasbeh, R.T, Korenevskiy, N., Ionescou, F., Alshamasin, M., Kuzmin, A.: Prediction and prenosological diagnostics of heart diseases based on energy characteristics of acupuncture points and fuzzy logic. Comput. Methods Biomech. Biomed. Eng., 1–9 (2012).  https://doi.org/10.1080/10255842.2011.554644
  56. 56.
    Al-Kasasbeh, R.T., Korenevskiy, N., Alshamasin, M.S., Klionskiy, D., Ionescu, F.: Numerical software algorithms for monitoring control processes and correcting health by synthesis of hybrid fuzzy rules of decision-making on the basis of changes in energetic characteristics of biologically active points. Int. J. Model. Identif. Control 25, 119–137 (2016)CrossRefGoogle Scholar
  57. 57.
    Al-Kasasbeh, R.T., Korenevskiy, N.A., Ionescu, F., Kuzmin, A.A.: Using fuzzy logic for prediction of occurrence, aggravation and prenosological diagnostics of osteochondrosis of a backbone’s lumbar region. In: Proceedings of the IASTED International Conference Computational Intelligence, 17–19 August 2009, Honolulu, HI, USA, pp. 190–194. ACTA Press (2009)Google Scholar
  58. 58.
    AL-Kasasbeh, R.T., Korenevskiy, N., Alshamasin, M.S., Maksim, I.: Method of the ergonomics assessment of the technical systems and its influence on operators. In: Advances in the International Conference on Applied Human Factors and Ergonomics Human Factors and Ergonomics in Healthcare and Medical Devices (AHFE 2017), Part of the Advances in Intelligent Systems and Computing book series (AISC), 17–21 July, Los Angeles, CA, USA, vol. 590, pp. 581–592 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering TechnologyAl-Balqa Applied UniversityAmmanJordan
  2. 2.South West State UniversityKurskRussia
  3. 3.Faculty of Karak CollegeAl-Balqa Applied UniversitySaltJordan
  4. 4.ITMO University Saint Petersburg National Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia

Personalised recommendations