Skip to main content

The Physics of \({\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}\) Approaching a Van Hove Singularity

  • Chapter
  • First Online:
Uniaxial Stress Technique and Investigations of Correlated Electron Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 458 Accesses

Abstract

Materials with strong electron-electron correlations are of particular importance in the study of condensed matter physics as it is here where conventional theories are often seen to be violated and exotic phases such as superconductivity and magnetism emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the presence of a crystal lattice one cannot strictly expand in terms of these spherical harmonics anymore but this has become the convention for the naming scheme so I stick with it here.

  2. 2.

    When counting the number of VHs’s language complications can lead to some confusion. The M points at the edge of the zone are shared with the adjacent zones so strictly speaking this means there are a total of two equivalent Van Hove points per tetragonal zone which would become two non-equivalent points if the lattice was distorted orthorhombically.

  3. 3.

    BCS estimates are expected to be accurate for a single band metal with a small gap but in a multiband system like \({\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}\) these estimates refer only to the average gap which can already be a big approximation when, like in \({\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}\), there are large changes around the Fermi surface. This analysis also completely overlooks the potential for interband coupling, so it should only be taken as a guide.

References

  1. Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J. G., et al. (1994). Superconductivity in a layered perovskite without copper. Nature, 372, 532–534.

    Article  ADS  Google Scholar 

  2. Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D., & Ohmichi, E. (2003). Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Advances in Physics, 52, 639–725.

    Article  ADS  Google Scholar 

  3. Forsythe, D., Julian, S. R., Bergemann, C., Pugh, E., Steiner, M. J., Alireza, P. L., et al. (2002). Evolution of Fermi-liquid interactions in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under pressure. Physical Review Letters, 89, 166402.

    Google Scholar 

  4. Kikugawa, N., Bergemann, C., Mackenzie, A. P., & Maeno, Y. (2004). Band-selective modification of the magnetic fluctuations in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): A study of substitution effects. Physical Review, B70, 134520.

    Article  ADS  Google Scholar 

  5. Shen, K. M., Kikugawa, N., Bergemann, C., Balicas, L., Baumberger, F., Meevasana, W., et al. (2007). Evolution of the Fermi surface and quasiparticle renormalization through a van Hove singularity in \({\rm Sr}_{2-y}{\rm La}_{y}{\rm RuO}_{4}\). Physical Review Letters, 99, 187001.

    Google Scholar 

  6. Burganov, B., Adamo, C., Mulder, A., Uchida, M., King, P. D. C., Harter, J. W., et al. (2016). Strain control of fermiology and many-body interactions in two-dimensional ruthenates. Physical Review Letters, 116, 197003.

    Google Scholar 

  7. Hicks, C. W., Brodsky, D. O., Yelland, E. A., Gibbs, A. S., Bruin, J. A. N., Barber, M. E., et al. (2014). Strong increase of \(T_c\) of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under both tensile and compressive strain. Science, 344, 283–285.

    Article  ADS  Google Scholar 

  8. Chmaissem, O., Jorgensen, J. D., Shaked, H., Ikeda, S., & Maeno, Y. (1998). Thermal expansion and compressibility of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 57, 5067–5070.

    Article  ADS  Google Scholar 

  9. Mackenzie, A. P., Julian, S. R., Diver, A. J., McMullan, G. J., Ray, M. P., Lonzarich, G. G., et al. (1996). Quantum oscillations in the layered Perovskite superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 76, 3786–3789.

    Article  ADS  Google Scholar 

  10. Damascelli, A., Lu, D. H., Shen, K. M., Armitage, N. P., Ronning, F., Feng, D. L., et al. (2000). Fermi surface, surface states, and surface reconstruction in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 85, 5194–5197.

    Article  ADS  Google Scholar 

  11. Bergemann, C., Julian, S. R., Mackenzie, A. P., NishiZaki, S., & Maeno, Y. (2000). Detailed topography of the Fermi surface of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 84, 2662–2665.

    Article  ADS  Google Scholar 

  12. Yoshida, Y., Mukai, A., Settai, R., Miyake, K., Inada, Y., Onuki, Y., et al. (1999). Fermi surface properties in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 68, 3041–3053.

    Article  ADS  Google Scholar 

  13. Yoshida, Y., Settai, R., Onuki, Y., Takei, H., Betsuyaku, K., & Harima, H. (1998). Fermi surface and Yamaji effect in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 67, 1677–1681.

    Article  ADS  Google Scholar 

  14. Ohmichi, E., Adachi, H., Mori, Y., Maeno, Y., Ishiguro, T., & Oguchi, T. (1999). Angle-dependent magnetoresistance oscillation in the layered perovskite \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 59, 7263–7265.

    Article  ADS  Google Scholar 

  15. Maeno, Y., Yoshida, K., Hashimoto, H., Nishizaki, S., Ikeda, S.-I., Nohara, M., et al. (1997). Two-dimensional Fermi liquid behavior of the superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 66, 1405–1408.

    Article  ADS  Google Scholar 

  16. Ishida, K., Kitaoka, Y., Asayama, K., Ikeda, S., Nishizaki, S., Maeno, Y., et al. (1997). Anisotropic pairing in superconducting \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Ru NMR and NQR studies. Physical Review B, 56, R505–R508.

    Article  ADS  Google Scholar 

  17. Hussey, N. E., Mackenzie, A. P., Cooper, J. R., Maeno, Y., Nishizaki, S., & Fujita, T. (1998). Normal-state magnetoresistance of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 57, 5505–5511.

    Article  ADS  Google Scholar 

  18. Ohmichi, E., Maeno, Y., Nagai, S., Mao, Z. Q., Tanatar, M. A., & Ishiguro, T. (2000). Magnetoresistance of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under high magnetic fields parallel to the conducting plane. Physical Review B, 61, 7101–7107.

    Article  ADS  Google Scholar 

  19. Shoenberg, D. (1984). Magnetic oscillations in metals. (Cambridge University Press). ISBN 9780521224802.

    Google Scholar 

  20. Mackenzie, A. P., & Maeno, Y. (2003). The superconductivity of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) and the physics of spin-triplet pairing. Reviews of Modern Physics, 75, 657–712.

    Article  ADS  Google Scholar 

  21. Onnes, H. K. (1911). The resistance of pure mercury at helium temperatures. Communications Physics Laboratory University of Leiden, 12, 120.

    Google Scholar 

  22. Ginzburg, V. L., & Landau, L. D. (1950). On the theory of superconductivity. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 20, 1064.

    Google Scholar 

  23. Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Microscopic theory of superconductivity. Physical Review, 106, 162–164.

    Article  ADS  MathSciNet  Google Scholar 

  24. Annett, J. F. (2004). Superconductivity, superfluids and condensates (Oxford University Press). ISBN 9780198507567

    Google Scholar 

  25. Blundell, S. J. (2009). Superconductivity: A very short introduction (Oxford University Press). ISBN 9780199540907.

    Google Scholar 

  26. Townsend, P., & Sutton, J. (1962). Investigation by electron tunneling of the superconducting energy gaps in Nb, Ta, Sn, and Pb. Physical Review, 128, 591–595.

    Article  ADS  Google Scholar 

  27. Mackenzie, A. P., Haselwimmer, R. K. W., Tyler, A. W., Lonzarich, G. G., Mori, Y., Nishizaki, S., et al. (1998). Extremely strong dependence of superconductivity on disorder in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 80, 161–164.

    Article  ADS  Google Scholar 

  28. Anderson, P. W. (1959). Knight shift in superconductors. Physical Review Letters, 3, 325–326.

    Article  ADS  Google Scholar 

  29. Rice, T. M., & Sigrist, M. (1995). \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): An electronic analogue of \({}^{3}{{\rm He}}\)? Journal of Physics: Condensed Matter, 7, L643–L648.

    ADS  Google Scholar 

  30. Maeno, Y., Kittaka, S., Nomura, T., Yonezawa, S., & Ishida, K. (2012). Evaluation of spin-triplet superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Journal of the Physical Society of Japan, 81, 011009.

    Article  ADS  Google Scholar 

  31. Kallin, C. (2012). Chiral p-wave order in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Reports on Progress in Physics, 75, 042501.

    Article  ADS  Google Scholar 

  32. Liu, Y., & Mao, Z.-Q. (2015). Unconventional superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physica C: Superconductivity and its Applications, 514, 339–353.

    Article  ADS  Google Scholar 

  33. Ishida, K., Mukuda, H., Kitaoka, Y., Asayama, K., Mao, Z. Q., Mori, Y., et al. (1998). Spin-triplet superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) identified by \(^{17}\)O Knight Shift. Nature, 396, 658–660.

    Article  ADS  Google Scholar 

  34. Duffy, J. A., Hayden, S. M., Maeno, Y., Mao, Z., Kulda, J., & Mcintyre, G. J. (2000). Polarized-neutron scattering study of the cooper-pair moment in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 85, 5412–5415.

    Article  ADS  Google Scholar 

  35. Nelson, K. D., Mao, Z. Q., Maeno, Y., & Liu, Y. (2004). Odd-parity superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Science, 306, 1151–1154.

    Article  ADS  Google Scholar 

  36. Sauls, J. A., Zou, Z. & Anderson, P. W. (1985). Josephson tunneling between superconductors with different spin and space symmetries.

    Google Scholar 

  37. Geshkenbein, V. B., & Larkin, A. I. (1986). The Josephson effect in superconductors with heavy fermions. JETP Letters, 43, 306–309.

    Google Scholar 

  38. Balian, R., & Werthamer, N. R. (1963). Superconductivity with pairs in a relative p wave. Physical Review, 131, 1553–1564.

    Article  ADS  Google Scholar 

  39. Luke, G. M., Fudamoto, Y., Kojima, K. M., Larkin, M. I., Nachumi, B., Uemura, Y. J., et al. (2000). Unconventional superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physica B: Condensed Matter, 289–290, 373–376.

    Article  ADS  Google Scholar 

  40. Luke, G. M., Fudamoto, Y., Kojima, K. M., Larkin, M. I., Merrin, J., Nachumi, B., et al. (1998). Time-reversal symmetry-breaking superconductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Nature, 394, 558–561.

    Article  ADS  Google Scholar 

  41. Kapitulnik, A., Xia, J., Schemm, E., & Palevski, A. (2009). Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New Journal of Physics, 11, 055060.

    Article  ADS  Google Scholar 

  42. Xia, J., Maeno, Y., Beyersdorf, P. T., Fejer, M. M., & Kapitulnik, A. (2006). High resolution Polar Kerr effect measurements of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Evidence for broken time-reversal symmetry in the superconducting state. Physical Review Letters, 97, 167002.

    Article  ADS  Google Scholar 

  43. Tamegai, T., Yamazaki, K., Tokunaga, M., Mao, Z., & Maeno, Y. (2003). Search for spontaneous magnetization in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physica C: Superconductivity, 388–389, 499–500.

    Article  ADS  Google Scholar 

  44. Björnsson, P. G., Maeno, Y., Huber, M. E., & Moler, K. A. (2005). Scanning magnetic imaging of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 72, 012504.

    Article  ADS  Google Scholar 

  45. Kirtley, J. R., Kallin, C., Hicks, C. W., Kim, E.-A., Liu, Y., Moler, K. A., et al. (2007). Upper limit on spontaneous supercurrents in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 76, 014526.

    Google Scholar 

  46. Hicks, C. W., Kirtley, J. R., Lippman, T. M., Koshnick, N. C., Huber, M. E., Maeno, Y., et al. (2010). Limits on superconductivity-related magnetization in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) and \({{\rm PrOs}}_{4}{{\rm Sb}}_{12}\) from scanning SQUID microscopy. Physical Review, B81, 214501.

    Google Scholar 

  47. NishiZaki, S., Maeno, Y., & Mao, Z. (2000). Changes in the superconducting state of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under magnetic fields probed by specific heat. Journal of the Physical Society of Japan, 69, 572–578.

    Article  ADS  Google Scholar 

  48. Izawa, K., Takahashi, H., Yamaguchi, H., Matsuda, Y., Suzuki, M., Sasaki, T., et al. (2001). Superconducting gap structure of spin-triplet superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) studied by thermal conductivity. Physical Review Letters, 86, 2653–2656.

    Article  ADS  Google Scholar 

  49. Tanatar, M. A., Nagai, S., Mao, Z. Q., Maeno, Y., & Ishiguro, T. (2001). Thermal conductivity of superconducting \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) in oriented magnetic fields. Physical Review B, 63, 064505.

    Article  ADS  Google Scholar 

  50. Tanatar, M. A., Suzuki, M., Nagai, S., Mao, Z. Q., Maeno, Y., & Ishiguro, T. (2001). Anisotropy of magnetothermal conductivity in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 86, 2649–2652.

    Article  ADS  Google Scholar 

  51. Ishida, K., Mukuda, H., Kitaoka, Y., Mao, Z., Mori, Y., & Maeno, Y. (2000). Anisotropic superconducting gap in the spin-triplet superconductor \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Evidence from a Ru-NQR study. Physical Review Letters, 84, 5387–5390.

    Article  ADS  Google Scholar 

  52. Bonalde, I., Yanoff, B. D., Salamon, M. B., Van Harlingen, D. J., Chia, E. M. E., Mao, Z. Q., et al. (2000). Temperature dependence of the penetration depth in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): Evidence for nodes in the gap function. Physical Review Letters, 85, 4775–4778.

    Article  ADS  Google Scholar 

  53. Hein, M. A., Ormeno, R. J., & Gough, C. E. (2001). The microwave surface impedance of ultra-pure superconducting metals. Journal of Physics: Condensed Matter, 13, L65.

    ADS  Google Scholar 

  54. Lupien, C., Macfarlane, W. A., Proust, C., Taillefer, L., Mao, Z. Q., & Maeno, Y. (2001). Ultrasound attenuation in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\): An angle-resolved study of the superconducting gap function. Physical Review Letters, 86, 5986–5989.

    Article  ADS  Google Scholar 

  55. Deguchi, K., Tanatar, M. A., Mao, Z., Ishiguro, T., & Maeno, Y. (2002). Superconducting double transition and the upper critical field limit of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) in parallel magnetic fields. Journal of the Physical Society of Japan, 71, 2839–2842.

    Article  ADS  Google Scholar 

  56. Morris, R. C., Coleman, R. V., & Bhandari, R. (1972). Superconductivity and magnetoresistance in \({{\rm NbSe}}_{2}\). Physical Review B, 5, 895–901.

    Article  ADS  Google Scholar 

  57. Sigrist, M., & Ueda, K. (1991). Phenomenological theory of unconventional superconductivity. Reviews of Modern Physics, 63, 239–311.

    Article  ADS  Google Scholar 

  58. Walker, M. B., & Contreras, P. (2002). Theory of elastic properties of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) at the superconducting transition temperature. Physical Review B, 66, 214508.

    Google Scholar 

  59. Zutic, I., & Mazin, I. (2005). Phase-sensitive tests of the pairing state symmetry in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review Letters, 95, 217004.

    Article  ADS  Google Scholar 

  60. Leijnse, M., & Flensberg, K. (2012). Introduction to topological superconductivity and Majorana fermions. Semiconductor Science and Technology, 27, 124003.

    Article  ADS  Google Scholar 

  61. Beenakker, C. W. J. (2013). Search for Majorana fermions in superconductors. Annual Review of Condensed Matter Physics, 4, 113–136.

    Article  ADS  Google Scholar 

  62. Van Hove, L. (1953). The occurrence of singularities in the elastic frequency distribution of a crystal. Physical Review, 89, 1189–1193.

    Article  ADS  MathSciNet  Google Scholar 

  63. Ashcroft, N. W. & Mermin, N. D. (1976). Solid state physics (Saunders College Publishing). ISBN 9780030839931.

    Google Scholar 

  64. Lifshitz, I. M. (1960). Anomalies of electron characteristics of a metal in the high pressure region. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 38, 1569–1576.

    Google Scholar 

  65. Landau, L. D. (1937). On the theory of phase transitions. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 7, 19–32.

    Google Scholar 

  66. Wen, X.-G. (2004). Quantum field theory of many-body systems (Oxford University Press). ISBN 9780198530947.

    Google Scholar 

  67. Lazarev, B. G., Lazareva, L. S., & Makarov, V. I. (1963). Some singularities of the behavior of the superconducting transition temperature of Thallium under pressure. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 44, 481–482.

    Google Scholar 

  68. Makarov, V. I., & Bar’yakhtar, V. G. (1965). Anomalies in the superconducting transition temperature under pressure. Zhurnal Experimental’noi i Teoreticheskoi Fiziki, 48, 1717–1722.

    Google Scholar 

  69. Holtham, P. M. (1973). A pseudopotential calculation of the effect of pressure on the Fermi surface and superconducting transition temperature of thallium. Journal of Physics F: Metal Physics, 3, 1361–1372.

    Article  ADS  Google Scholar 

  70. Chu, C. W., Smith, T. F., & Gardner, W. E. (1970). Study of Fermi-surface topology changes in rhenium and dilute Re solid solutions from \(T_c\) measurements at high pressure. Physical Review B, 1, 214–221.

    Article  ADS  Google Scholar 

  71. Struzhkin, V. V., Timofeev, Y. A., Hemley, R. J., & Mao, H.-K. (1997). Superconducting \(T_c\) and electron-phonon coupling in Nb to 132 GPa: Magnetic susceptibility at megabar pressures. Physical Review Letters, 79, 4262–4265.

    Article  ADS  Google Scholar 

  72. Benhabib, S., Sacuto, A., Civelli, M., Paul, I., Cazayous, M., Gallais, Y., et al. (2015). Collapse of the normal-state pseudogap at a Lifshitz Transition in the \({{\rm Bi}}_{2}{{\rm Sr}}_{2}{{\rm CaCu}}_{2}{{\rm O}}_{8+\delta }\) cuprate superconductor. Physical Review Letters, 114, 147001.

    Google Scholar 

  73. LeBoeuf, D., Doiron-Leyraud, N., Vignolle, B., Sutherland, M., Ramshaw, B. J., Levallois, J., et al. (2011). Lifshitz critical point in the cuprate superconductor \({{\rm YBa}}_{2}{{\rm Cu}}_{3}{{\rm O}}_{y}\) from high-field Hall effect measurements. Physical Review B, 83, 054506.

    Google Scholar 

  74. Kikugawa, N., Mackenzie, A. P., Bergemann, C., Borzi, R. A., Grigera, S. A., & Maeno, Y. (2004). Rigid-band shift of the Fermi level in the strongly correlated metal: \({\rm Sr}_{2-y}{\rm La}_{y}{\rm RuO}_{4}\). Physical Review B, 70, 060508.

    Google Scholar 

  75. Laugier, J., & Filhol, A. (1983). An interactive program for the interpretation and simulation of Laue patterns. Journal of Applied Crystallography, 16, 281–283.

    Article  Google Scholar 

  76. Paglione, J., Lupien, C., MacFarlane, W. A., Perz, J. M., Taillefer, L., Mao, Z. Q., et al. (2002). Elastic tensor of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 65, 220506.

    Google Scholar 

  77. Taniguchi, H., Nishimura, K., Goh, S. K., Yonezawa, S., & Maeno, Y. (2015). Higher-\(T_c\) superconducting phase in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) induced by in-plane uniaxial pressure. Journal of the Physical Society of Japan, 84, 014707.

    Article  ADS  Google Scholar 

  78. Ying, Y. A., Staley, N. E., Xin, Y., Sun, K., Cai, X., Fobes, D., et al. (2013). Enhanced spin-triplet superconductivity near dislocations in \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Nature Communications, 4, 2596.

    Google Scholar 

  79. Steppke, A., Zhao, L., Barber, M. E., Scaffidi, T., Jerzembeck, F., Rosner, H., et al. (2017). Strong peak in \(T_c\) of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) under uniaxial pressure. Science355. http://science.sciencemag.org/content/355/6321/eaaf9398.

  80. Liu, Y.-C., Zhang, F.-C., Rice, T. M. & Wang, Q.-H. (2016). Theory of the evolution of superconductivity in\({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)under anisotropic strain. arXiv:1604.06666.

  81. Lyard, L., Samuely, P., Szabo, P., Klein, T., Marcenat, C., Paulius, L., et al. (2002). Anisotropy of the upper critical field and critical current in single crystal \({{\rm MgB}}_{2}\). Physical Review B, 66, 180502.

    Google Scholar 

  82. Gurevich, A. (2007). Limits of the upper critical field in dirty two-gap superconductors. Physica C: Superconductivity and its Applications, 456, 160–169.

    Article  ADS  Google Scholar 

  83. Kittaka, S., Nakamura, T., Aono, Y., Yonezawa, S., Ishida, K., & Maeno, Y. (2009). Angular dependence of the upper critical field of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 80, 174514.

    Google Scholar 

  84. Ramires, A., & Sigrist, M. (2016). Identifying detrimental effects for multiorbital superconductivity: Application to \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 94, 104501.

    Article  ADS  Google Scholar 

  85. Ramires, A. & Sigrist, M. (2016). A note on the upper critical field of\({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)under strain. arXiv:1606.08709.

  86. Maeno, Y., Ando, T., Mori, Y., Ohmichi, E., Ikeda, S., NishiZaki, S., et al. (1998). Enhancement of superconductivity of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\) to 3 K by embedded metallic microdomains. Physical Review Letters, 81, 3765–3768.

    Article  ADS  Google Scholar 

  87. Yaguchi, H., Wada, M., Akima, T., Maeno, Y., & Ishiguro, T. (2003). Interface superconductivity in the eutectic \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)-Ru: 3-K phase of \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 67, 214519.

    Article  ADS  Google Scholar 

  88. Kittaka, S., Nakamura, T., Yaguchi, H., Yonezawa, S., & Maeno, Y. (2009). Spatial development of superconductivity in the \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)-Ru eutectic system. Journal of the Physical Society of Japan, 78, 064703.

    Article  ADS  Google Scholar 

  89. Ying, Y. A., Xin, Y., Clouser, B. W., Hao, E., Staley, N. E., Myers, R. J., et al. (2009). Suppression of proximity effect and the enhancement of p-wave superconductivity in the \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\)-Ru system. Physical Review Letters, 103, 247004.

    Google Scholar 

  90. Ford, P. J., & Mydosh, J. A. (1976). Electrical resistivity of noble-metal-host-3d solute spin-glass alloys. Physical Review B, 14, 2057–2070.

    Article  ADS  Google Scholar 

  91. Hartnoll, S. A., Mahajan, R., Punk, M., & Sachdev, S. (2014). Transport near the Ising-nematic quantum critical point of metals in two dimensions. Physical Review B, 89, 155130.

    Article  ADS  Google Scholar 

  92. Maslov, D. L., Yudson, V. I., & Chubukov, A. V. (2011). Resistivity of a non-galilean-invariant Fermi liquid near Pomeranchuk quantum criticality. Physical Review Letters, 106, 106403.

    Article  ADS  Google Scholar 

  93. Pal, H. K., Yudson, V. I., & Maslov, D. L. (2012). Resistivity of non-galilean-invariant Fermi- and non-Fermi liquids. Lithuanian Journal of Physics, 52, 142–164.

    Article  ADS  Google Scholar 

  94. Grosche, F. M., Pfleiderer, C., McMullan, G. J., Lonzarich, G. G., & Bernhoeft, N. R. (1995). Critical behaviour of \({{\rm ZrZn}}_{2}\). Physica B: Physics of Condensed Matter, 206–207, 20–22.

    Article  ADS  Google Scholar 

  95. Julian, S. R., Pfleiderer, C., Grosche, F. M., Mathur, N. D., McMullan, G. J., Diver, A. J., et al. (1996). The normal states of magnetic d and f transition metals. Journal of Physics: Condensed Matter, 8, 9675.

    ADS  Google Scholar 

  96. Pfleiderer, C., McMullan, G. J., Julian, S. R., & Lonzarich, G. G. (1997). Magnetic quantum phase transition in MnSi under hydrostatic pressure. Physical Review B, 55, 8330–8338.

    Article  ADS  Google Scholar 

  97. Pfleiderer, C., Julian, S. R., & Lonzarich, G. G. (2001). Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature, 414, 427–430.

    Article  ADS  Google Scholar 

  98. Niklowitz, P. G., Beckers, F., Lonzarich, G. G., Knebel, G., Salce, B., Thomasson, J., et al. (2005). Spin-fluctuation-dominated electrical transport of \({{\rm Ni}}_{3}{{\rm Al}}\) at high pressure. Physical Review B, 72, 024424.

    Google Scholar 

  99. Grosche, F. M., Julian, S. R., Mathur, N. D., & Lonzarich, G. G. (1996). Magnetic and superconducting phases of \({{\rm CePd}}_{2}{{\rm Si}}_{2}\). Physica B: Condensed Matter, 223, 50–52.

    Article  ADS  Google Scholar 

  100. Grosche, F. M., Walker, I. R., Julian, S. R., Mathur, N. D., Freye, D. M., Steiner, M. J., et al. (2001). Superconductivity on the threshold of magnetism in \({{\rm CePd}}_{2}{{\rm Si}}_{2}\) and \({{\rm CeIn}}_{3}\). Journal of Physics: Condensed Matter, 13, 2845–2860.

    ADS  Google Scholar 

  101. Moroni-Klementowicz, D., Brando, M., Albrecht, C., Duncan, W. J., Grosche, F. M., Grüner, D., et al. (2009). Magnetism in \({{\rm Nb}}_{1-y}{{\rm Fe}}_{2+y}\): Composition and magnetic field dependence. Physical Review B, 79, 224410.

    Google Scholar 

  102. Brando, M., Duncan, W. J., Moroni-Klementowicz, D., Albrecht, C., Grüner, D., Ballou, R., et al. (2008). Logarithmic Fermi-liquid breakdown in \({{\rm NbFe}}_{2}\). Physical Review Letters, 101, 026401.

    Google Scholar 

  103. Neal, B. P., Ylvisaker, E. R., & Pickett, W. E. (2011). Quantum criticality in \({{\rm NbFe}}_{2}\) induced by zero carrier velocity. Physical Review B, 84, 085133.

    Article  ADS  Google Scholar 

  104. Klauder, J. R. & Kunzler, J. E. (1960). Higher order open orbits and the interpretation of magnetoresistance and Hall-effect data for copper. In The Fermi surface (p. 125). New York: Wiley.

    Google Scholar 

  105. Pippard, A. B. (1989). Magnetoresistance in metals (Cambridge University Press). ISBN 9780521326605

    Google Scholar 

  106. Ong, N. (1991). Geometric interpretation of the weak-field Hall conductivity in two-dimensional metals with arbitrary Fermi surface. Physical Review B, 43, 193–201.

    Article  ADS  Google Scholar 

  107. Mackenzie, A. P., Hussey, N. E., Diver, A. J., Julian, S. R., Maeno, Y., Nishizaki, S., et al. (1996). Hall effect in the two-dimensional metal \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 54, 7425–7429.

    Article  ADS  Google Scholar 

  108. Kikugawa, N., Mackenzie, A., Bergemann, C., & Maeno, Y. (2004). Low-temperature Hall effect in substituted \({{\rm Sr}}_{2}{{\rm RuO}}_{4}\). Physical Review B, 70, 174501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Edward Barber .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barber, M.E. (2018). The Physics of \({\mathrm{Sr}}_{2}{\mathrm{RuO}}_{4}\) Approaching a Van Hove Singularity. In: Uniaxial Stress Technique and Investigations of Correlated Electron Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93973-5_3

Download citation

Publish with us

Policies and ethics