Skip to main content

A Holographic Kondo Model

  • Chapter
  • First Online:
Applications of the Gauge/Gravity Duality

Part of the book series: Springer Theses ((Springer Theses))

  • 499 Accesses

Abstract

This chapter presents our work on a holographic Kondo model. This model describes a magnetic impurity coupled to strongly correlated charge carriers, which are modelled by a holographic CFT. We extend the model by adding a second impurity and including an inter-impurity interaction. We obtain numerical evidence for a quantum phase transition in the two-impurity phase diagram. Computing correlation functions in the holographic single-impurity Kondo model, we observe Fano resonances in the corresponding spectrum and identify the Kondo resonance.

This chapter is based on A. O’Bannon, I. Papadimitriou and J. Probst, A Holographic Two-Impurity Kondo Model, JHEP 01 (2016) 103, [1510.08123] (Ref. [1]), on J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu, Holographic Kondo and Fano Resonances, Phys. Rev. D96 (2017) 021901, [1611.09368] (Ref. [2]), and on J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu, Two-point Functions in a Holographic Kondo Model, JHEP 03 (2017) 039, [1612.02005] (Ref. [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A LFL describes weakly interacting fermionic quasi-particles (‘dressed electrons’) whose excitations are in one-to-one correspondence with and have the same quantum numbers as their free counterparts (‘bare electrons’), but whose mass and other couplings assume different, renormalised values [5].

  2. 2.

    Intuitively, a conduction electron locks with the impurity into a spin singlet, which makes the impurity location impenetrable for other conduction electrons due to Pauli exclusion.

  3. 3.

    A different approach, using a delta-function source to describe a point-like impurity, is followed in Ref. [92].

  4. 4.

    Strictly speaking, the term ‘RKKY interaction’ only refers to a Heisenberg interaction that is induced by Friedel oscillations in the LFL at order \(\lambda _{\text {K}}^2\) in perturbation theory [4, 52]. In the large-N limit, however, the RKKY interaction is sub-leading in N and we need to add a Heisenberg interaction by hand [55]. In a (standard) abuse of terminology we will still call it RKKY coupling.

  5. 5.

    Surprisingly, numerical RG techniques reveal that the spin-spin correlator \(\langle S^A_{\text {I}} S^A_{\text {II}}\rangle \) decreases smoothly and monotonically as \(\lambda _{\text {RKKY}}/T_{\text {K}}\) increases from the FM limit, \(\lambda _{\text {RKKY}}/T_{\text {K}} \rightarrow -\infty \), where \(\langle S^A_{\text {I}} S^A_{\text {II}}\rangle =1/4\), the triplet value, to the AFM RKKY limit \(\lambda _{\text {RKKY}}/T_{\text {K}} \rightarrow + \infty \), where \(\langle S^A_{\text {I}} S^A_{\text {II}}\rangle =-3/4\), the singlet value [53, 54, 56, 58].

  6. 6.

    Our choices of spin and charge for \(\mathcal {O}\) indicate unambiguously that our model describes a Kondo rather than an Anderson model, and that the impurity spins are in totally anti-symmetric representations of SU(N). Totally symmetric representations, for example, would involve Schwinger bosons rather than Abrikosov pseudo-fermions [32, 98, 99], in which case \(\mathcal {O}\) would be fermionic. In the Anderson model, the impurity is a bi-linear of two physical f electrons which are charged under the U(1) of electromagnetism, in contrast to the pseudo-fermions which are neutral under that U(1) [4]. The Anderson model would thus require a complex scalar similar to our \(\mathcal {O}\), but built from a chiral fermion \(\psi \) and the f electron and hence neutral under the electric U(1).

  7. 7.

    Our choice \(K=1\) then guarantees, based on SU(N) representation theory arguments and Pauli exclusion alone, that overscreening cannot occur in our model [33].

  8. 8.

    We do not set \(M_+^2 = -1/4\), because then \(M^2_-\) would violate the BF bound, producing an instability.

  9. 9.

    Equations (5.32b) and (5.32c) are actually identical in form to the equations of motion in the holographic single-impurity Kondo model of Ref. [73], but where Ref. [73] had \(a_t^0\) and \(\phi \) we have \(\mathcal {A}_t^+\) and \(\phi \). However, we will see that the boundary conditions on \(\mathcal {A}_t^+\) and \(\phi \) in our two-impurity model are very different from those in Ref. [73] and that they will effectively couple \(\mathcal {A}_t^-\) to \(\mathcal {A}_t^+\) and \(\phi \).

  10. 10.

    References [117, 118] observed the same in holographic counterterms for irrelevant operators: they depend on sub-leading modes, but are well-defined for boundary conditions dual to multi-trace couplings.

  11. 11.

    In the holographic single-impurity Kondo model of Ref. [73], the finite boundary term involving the scalar field was different from our \(S_{\text {K}}\): it had the same form as our \(S_{\text {K}}\), but with \(\beta \rightarrow \alpha \) and \(\kappa \rightarrow 1/\kappa \). In that case, the linear combination of \(\alpha \) and \(\beta \) held fixed in the variational principle would not be \(\alpha - \kappa \beta \). Nevertheless, \(\alpha - \kappa \beta \) was held fixed in Ref. [73]. Those two wrongs made a right, in the following sense: the finite boundary term in Ref. [73], when evaluated on \(\alpha =\kappa \beta \), actually agrees with our \(S_{\text {K}}\), so the solutions for the scalar and the value of the on-shell action of Ref. [73] actually agree with those obtained using our \(S_{\text {K}}\). Similarly, the one-point function identified as \(\langle \mathcal {O} \rangle \propto N \alpha \) in Ref. [73] agrees with our \(\langle \mathcal {O} \rangle \propto N \beta \) when evaluated on \(\alpha = \kappa \beta \).

  12. 12.

    We show in the appendix of Ref. [1] that both Dirichlet and Neumann, and hence also mixed boundary conditions lead to normalisable solutions for a gauge field in \(AdS_2\).

  13. 13.

    The argument of the logarithm in Eq. (5.54) is made dimensionless by the unit \(AdS_3\) radius.

  14. 14.

    In contrast, if we had started with a Neumann boundary condition for \(\phi \) instead of Dirichlet, then \(\kappa \)’s RG transformation would be \(\kappa \longrightarrow \left(1+\kappa \ln (L)\right)/\kappa \), which is always marginally relevant since \(\kappa \) grows in the IR, \(L\rightarrow \infty \), for both \(\kappa <0\) and \(\kappa >0\) in the UV.

  15. 15.

    These two phases are also distinguished by their phase shifts. As in the holographic single-impurity Kondo model of Ref. [73], in our model the phase shift that accompanies Kondo screening appears holographically as a Wilson line of the Chern-Simons field in the x direction: if we compactify the x direction then the phase shift is \(\propto \oint _x A\). Equation (5.17b) shows that if \(\mathcal {A}_t^+\ne 0\), \(\phi \ne 0\) then \(A_x\ne 0\), while if \(\mathcal {A}_t^+=\phi =0\) then \(A_x=0\). Translating to the field theory, we find that a phase shift occurs in non-trivial states but not in the trivial state. In fact, the Chern-Simons field’s only role is to implement the phase shift and it will play no further role in the remainder of this section.

  16. 16.

    The appearance of non-trivial solutions for only one sign of a double-trace coupling is in fact generic in large-N field theory and in holography [107, 119, 120]. Adding a double-trace coupling shifts the quantum effective potential and generically will change the ground state only for one sign of the double-trace coupling constant, much the way a mass term added to a scalar field theory with quartic interaction will trigger scalar condensation only for negative mass-squared.

  17. 17.

    The explicit solutions can be found in Eqs. (3.23)–(3.27) in Ref. [3], where \(\delta \Phi \) and \(\delta \Phi ^\dagger \) are referred to as \(y_+\) and \(y_-\) respectively.

  18. 18.

    We discuss the positivity property satisfied by spectral functions of non-Hermitian operators such as our \(\mathcal{O}\) in Appendix A.

References

  1. A. O’Bannon, I. Papadimitriou, J. Probst, A holographic two-impurity kondo model. JHEP 01, 103 (2016). https://doi.org/10.1007/JHEP01(2016)103, arXiv:1510.08123

  2. J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst, J.M.S. Wu, Holographic Kondo and Fano resonances. Phys. Rev. D 96, 021901 (2017). https://doi.org/10.1103/PhysRevD.96.021901, arXiv:1611.09368

  3. J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst, J.M.S. Wu, Two-point functions in a holographic Kondo Model. JHEP 03, 039 (2017). https://doi.org/10.1007/JHEP03(2017)039, arXiv:1612.02005

  4. P. Coleman, Heavy fermions: electrons at the edge of magnetism, in Handbook of Magnetism and Advanced Magnetic Materials: Fundamentals and Theory, vol. 1, ed. by Kronmuller, Parkin (Wiley, 2007), pp. 95–148. arXiv:cond-mat/0612006

  5. J. Zaanen, Y.-W. Sun, Y. Liu, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, 2015)

    Google Scholar 

  6. P. Coleman, Heavy Fermions and the Kondo Lattice: A 21st Century Perspective, arXiv:1509.05769

  7. P. Gegenwart, Q. Si, F. Steglich, Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (March 2008). https://doi.org/10.1038/nphys892, arXiv:0712.2045

    Article  ADS  Google Scholar 

  8. Q. Si, Quantum criticality and global phase diagram of magnetic heavy fermions. arXiv:0912.0040

  9. Q. Si, Quantum Criticality and the Kondo Lattice, Understanding Quantum Phase Transitions. Series: Condensed Matter Physics (CRC Press, 2010), pp. 193–216. https://doi.org/10.1201/b10273-11, arXiv:1012.5440

    Google Scholar 

  10. Q. Si, F. Steglich, Heavy fermions and quantum phase transitions. Science 329, 1161 (2010). https://doi.org/10.1126/science.1191195, arXiv:1102.4896

    Article  ADS  Google Scholar 

  11. B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, J. Zaanen, High Temperature Superconductivity in the Cuprates. arXiv:1409.4673

  12. S. Doniach, The Kondo lattice and weak antiferromagnetism. Physica B+C 91, 231–234 (1977). https://doi.org/10.1016/0378-4363(77)90190-5

    Article  ADS  Google Scholar 

  13. J. Kondo, Resistance minimum in dilute magnetic alloys. Prog. Theo. Phys. 32, 37–49 (1964). https://doi.org/10.1143/PTP.32.37

    Article  ADS  Google Scholar 

  14. G. Grüner, A. Zawadowski, Low temperature properties of Kondo alloys, in Progress in Low Temperature Physics, vol. 7, ed, by D. Brewer, Part B (Elsevier, 1978), pp. 591–647

    Google Scholar 

  15. C. Rizzuto, Formation of localized moments in metals: experimental bulk properties. Rep. Prog. Phys. 37, 147 (1974)

    Article  ADS  Google Scholar 

  16. S. Cronenwett, T. Oosterkamp, L. Kouwenhoven, A Tunable Kondo Effect in Quantum Dots. Science 281, 540–544 (1998). https://doi.org/10.1126/science.281.5376.540

    Article  ADS  Google Scholar 

  17. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998). https://doi.org/10.1038/34373

    Article  ADS  Google Scholar 

  18. W.G. van der Wiel, S.D. Franceschi, T. Fujisawa, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, The Kondo Effect in the Unitary Limit. Science 289, 2105–2108 (2000). https://doi.org/10.1126/science.289.5487.2105

    Article  ADS  Google Scholar 

  19. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Renormalization-group approach to the Anderson model of dilute magnetic alloys. II. Static properties for the asymmetric case. Phys. Rev. B 21, 1044–1083 (1980). https://doi.org/10.1103/PhysRevB.21.1044

    Article  ADS  Google Scholar 

  20. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Renormalization-group approach to the Anderson model of dilute magnetic alloys. I. Static properties for the symmetric case. Phys. Rev. B 21, 1003–1043 (1980). https://doi.org/10.1103/PhysRevB.21.1003

    Article  ADS  Google Scholar 

  21. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975). https://doi.org/10.1103/RevModPhys.47.773

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Andrei, Diagonalization of the Kondo Hamiltonian. Phys. Rev. Lett. 45, 379–382 (1980). https://doi.org/10.1103/PhysRevLett.45.379

    Article  ADS  Google Scholar 

  23. N. Andrei, Integrable Models in Condensed Matter Physics. arXiv:cond-mat/9408101

  24. N. Andrei, K. Furuya, J.H. Lowenstein, solution of the Kondo problem. Rev. Mod. Phys. 55, 331–402 (1983). https://doi.org/10.1103/RevModPhys.55.331

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Coleman, N. Andrei, Diagonalisation of the generalised Anderson Model. J. Phys. C 19, 3211–3233 (1986)

    Article  ADS  Google Scholar 

  26. A. Jerez, N. Andrei, G. Zaránd, Solution of the multichannel coqblin-schrieffer impurity model and application to multilevel systems. Phys. Rev. B 58, 3814–3841 (1998). https://doi.org/10.1103/PhysRevB.58.3814, arXiv:cond-mat/9803137

    Article  ADS  Google Scholar 

  27. A. Tsvelick, P. Wiegmann, Exact results in the theory of magnetic alloys. Adv. Phys. 32, 453–713 (1983). https://doi.org/10.1080/00018738300101581

    Article  ADS  Google Scholar 

  28. P. Wiegmann, Exact solution of s-d exchange model at T=0. Sov. Phys. JETP Lett. 31, 364 (1980)

    ADS  Google Scholar 

  29. P. Zinn-Justin, N. Andrei, The generalized multi-channel Kondo Model: thermodynamics and fusion equations. Nucl. Phys. B 528, 648–682 (1998). https://doi.org/10.1016/S0550-3213(98)00387-3, arXiv:cond-mat/9801158

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Bickers, Review of techniques in the large-N expansion for dilute magnetic alloys. Rev. Mod. Phys. 59, 845–939 (1987). https://doi.org/10.1103/RevModPhys.59.845

    Article  ADS  Google Scholar 

  31. P. Coleman, Mixed valence as an almost broken symmetry. Phys. Rev. B 35, 5072–5116 (1987). https://doi.org/10.1103/PhysRevB.35.5072

    Article  ADS  Google Scholar 

  32. O. Parcollet, A. Georges, Transition from overscreening to underscreening in the multichannel Kondo model: exact solution at large. Nucl. Phys. Rev. Lett. 79 4665–4668 (1997). https://doi.org/10.1103/PhysRevLett.79.4665, arXiv:cond-mat/9707337

    Article  ADS  Google Scholar 

  33. O. Parcollet, A. Georges, G. Kotliar, A. Sengupta, Overscreened Multi-channel SU(N) Kondo Model: large-N solution and conformal field theory. Phys. Rev. B 58, 3794–3813 (1998). https://doi.org/10.1103/PhysRevB.58.3794, arXiv:cond-mat/9711192

    Article  ADS  Google Scholar 

  34. I. Affleck, A current algebra approach to the Kondo effect. Nucl. Phys. B 336, 517 (1990). https://doi.org/10.1016/0550-3213(90)90440-O

    Article  MathSciNet  ADS  Google Scholar 

  35. I. Affleck, Conformal field theory approach to the Kondo effect. Acta Phys. Polon. B 26, 1869–1932 (1995). arXiv:cond-mat/9512099

  36. I. Affleck, A. Ludwig, Critical theory of overscreened Kondo fixed points. Nucl. Phys. B 360, 641–696 (1991). https://doi.org/10.1016/0550-3213(91)90419-X

    Article  MathSciNet  ADS  Google Scholar 

  37. I. Affleck, A. Ludwig, Exact Conformal-field-theory Results on the Multichannel Kondo effect: Single-fermion Green’s function, self-energy, and resistivity. Phys. Rev. B 48, 7297–7321 (1993). https://doi.org/10.1103/PhysRevB.48.7297

    Article  ADS  Google Scholar 

  38. I. Affleck, A. Ludwig, The Kondo Effect, conformal field theory and fusion rules. Nucl. Phys. B 352, 849–862 (1991). https://doi.org/10.1016/0550-3213(91)90109-B

    Article  MathSciNet  ADS  Google Scholar 

  39. I. Affleck, A. Ludwig, Universal non-integer ’Ground State Degeneracy’ in critical quantum systems. Phys. Rev. Lett. 67, 161–164 (1991). https://doi.org/10.1103/PhysRevLett.67.161

    Article  MathSciNet  ADS  Google Scholar 

  40. D.L. Cox, A. Zawadowski, Exotic Kondo effects in metals: magnetic ions in a crystalline electric field and tunnelling centres. Adv. Phys. 47, 599–942 (1998). https://doi.org/10.1080/000187398243500, arXiv:cond-mat/9704103

    Article  Google Scholar 

  41. A. Hewson, The Kondo Model to Heavy Fermions (Cambridge University Press, 1993)

    Google Scholar 

  42. I. Affleck, The Kondo screening cloud: what it is and how to observe it. arXiv:0911.2209

  43. I. Affleck, A.W.W. Ludwig, Exact critical theory of the two impurity Kondo model. Phys. Rev. Lett. 68, 1046–1049 (1992). https://doi.org/10.1103/PhysRevLett.68.1046

    Article  ADS  Google Scholar 

  44. I. Affleck, A. Ludwig, B. Jones, Conformal-field-theory approach to the two-impurity kondo problem: comparison with numerical renormalization-group results. Phys. Rev. B 52, 9528–9546 (1995). https://doi.org/10.1103/PhysRevB.52.9528, arXiv:cond-mat/9409100

    Article  ADS  Google Scholar 

  45. R.M. Fye, "Anomalous fixed point behavior" of two Kondo impurities: a reexamination. Phys. Rev. Lett. 72, 916–919 (1994). https://doi.org/10.1103/PhysRevLett.72.916

  46. R.M. Fye, J.E. Hirsch, Quantum Monte Carlo study of the two-impurity Kondo Hamiltonian. Phys. Rev. B 40, 4780–4796 (1989). https://doi.org/10.1103/PhysRevB.40.4780

    Article  ADS  Google Scholar 

  47. R.M. Fye, J.E. Hirsch, D.J. Scalapino, Kondo effect versus indirect exchange in the two-impurity Anderson model: a Monte Carlo study. Phys. Rev. B 35, 4901–4908 (1987). https://doi.org/10.1103/PhysRevB.35.4901

    Article  ADS  Google Scholar 

  48. J. Gan, Mapping the critical point of the two-impurity Kondo model to a two-channel problem. Phys. Rev. Lett. 74, 2583–2586 (1995). https://doi.org/10.1103/PhysRevLett.74.2583

    Article  ADS  Google Scholar 

  49. J. Gan, Solution of the two-impurity Kondo model: critical point, Fermi-liquid phase, and crossover. Phys. Rev. B 51, 8287–8309 (1995). https://doi.org/10.1103/PhysRevB.51.8287

    Article  ADS  Google Scholar 

  50. A. Georges, A.M. Sengupta, Solution of the two-impurity, two-channel Kondo Model. Phys. Rev. Lett. 74, 2808–2811 (1995). https://doi.org/10.1103/PhysRevLett.74.2808

    Article  ADS  Google Scholar 

  51. K. Ingersent, B.A. Jones, Low-temperature physics of the two-impurity, two-channel Kondo model. Phys. B: Condens. Matter 199, 402–405 (1994). https://doi.org/10.1016/0921-4526(94)91850-3

    Article  ADS  Google Scholar 

  52. C. Jayaprakash, H. Krishna-murthy, J. Wilkins, Two-impurity Kondo Problem. Phys. Rev. Lett. 47, 737–740 (1981). https://doi.org/10.1103/PhysRevLett.47.737

    Article  ADS  Google Scholar 

  53. B. Jones, Antiferromagnetic phase instability in the two-impurity Kondo problem, in Field Theories in Condensed Matter Physics: A Workshop, ed. by Z. Tesanovic (Addison-Wesley, 1990), pp. 87–103

    Google Scholar 

  54. B. Jones, The Kondo effect, in Handbook of Magnetism and Advanced Magnetic Materials: Fundamentals and Theory, ed. by Kronmuller, Parkin, vol. 1 (Wiley, 2007), pp. 149–163

    Google Scholar 

  55. B.A. Jones, B.G. Kotliar, A.J. Millis, Mean-field analysis of two antiferromagnetically coupled Anderson impurities. Phys. Rev. B 39, 3415–3418 (1989). https://doi.org/10.1103/PhysRevB.39.3415

    Article  ADS  Google Scholar 

  56. B. Jones, C. Varma, Critical point in the solution of the two magnetic impurity problem. Phys. Rev. B 40, 324–329 (1989). https://doi.org/10.1103/PhysRevB.40.324

    Article  ADS  Google Scholar 

  57. B. Jones, C. Varma, Study of two magnetic impurities in a fermi gas. Phys. Rev. Lett. 58, 843–846 (1987). https://doi.org/10.1103/PhysRevLett.58.843

    Article  ADS  Google Scholar 

  58. B. Jones, C. Varma, J. Wilkins, Low-temperature properties of the two-impurity Kondo Hamiltonian. Phys. Rev. Lett. 61, 125–128 (1988). https://doi.org/10.1103/PhysRevLett.61.125

    Article  ADS  Google Scholar 

  59. A. Millis, B. Kotliar, B. Jones, The two Kondo impurity problem: a large N biased review, in Field Theories in Condensed Matter Physics: A Workshop, ed. by Z. Tesanovic (Addison-Wesley, 1990), pp. 159–166

    Google Scholar 

  60. J.B. Silva, W.L.C. Lima, W.C. Oliveira, J.L.N. Mello, L.N. Oliveira, J.W. Wilkins, Particle-Hole asymmetry in the two-impurity Kondo model. Phys. Rev. Lett. 76, 275–278 (1996). https://doi.org/10.1103/PhysRevLett.76.275

    Article  ADS  Google Scholar 

  61. P. Fröjdh, H. Johannesson, Kondo effect in a Luttinger liquid: exact results from conformal field theory. Phys. Rev. B 75, 300–303 (1995). https://doi.org/10.1103/PhysRevLett.75.300

    Article  ADS  Google Scholar 

  62. P. Fröjdh, H. Johannesson, Magnetic impurity in a Luttinger liquid: a conformal field theory approach. Phys. Rev. B 53, 3211–3236 (1996). https://doi.org/10.1103/PhysRevB.53.3211

    Article  ADS  Google Scholar 

  63. A. Furusaki, Kondo problems in Tomonaga-Luttinger liquids. J. Phys. Soc. Jpn. 74, 73–79 (2005). https://doi.org/10.1143/JPSJ.74.73, arXiv:cond-mat/0409016

    Article  ADS  Google Scholar 

  64. A. Furusaki, N. Nagaosa, Kondo effect in a Tomonaga-Luttinger liquid. Phys. Rev. Lett. 72, 892–895 (1994). https://doi.org/10.1103/PhysRevLett.72.892

    Article  ADS  Google Scholar 

  65. D.-H. Lee, J. Toner, Kondo effect in a Luttinger liquid. Phys. Rev. Lett. 69, 3378–3381 (1992). https://doi.org/10.1103/PhysRevLett.69.3378

    Article  ADS  Google Scholar 

  66. P. Fulde, V. Zevin, G. Zwicknagl, Model for heavy-fermion behavior of Nd1.8Ce0.2CuO4. Zeitschrift für Phys. B Condens. Matter 92, 133–135 (1993). https://doi.org/10.1007/BF01312167

  67. T. Schork, P. Fulde, Interaction of a magnetic impurity with strongly correlated conduction electrons. Phys. Rev. B 50, 1345–1350 (1994). https://doi.org/10.1103/PhysRevB.50.1345

    Article  ADS  Google Scholar 

  68. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105–114 (1998). https://doi.org/10.1016/S0370-2693(98)00377-3, arXiv:hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  69. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). https://doi.org/10.1023/A:1026654312961, arXiv:hep-th/9711200

  70. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

    Article  MathSciNet  ADS  Google Scholar 

  71. P. Benincasa, A. Ramallo, Fermionic impurities in Chern-Simons-Matter theories. JHEP 1202, 076 (2012). https://doi.org/10.1007/JHEP02(2012)076, arXiv:1112.4669

  72. P. Benincasa, A. Ramallo, Holographic Kondo model in various dimensions. JHEP 1206, 133 (2012). https://doi.org/10.1007/JHEP06(2012)133. arXiv:1204.6290

  73. J. Erdmenger, C. Hoyos, A. O’Bannon, J. Wu, A holographic model of the Kondo effect. JHEP 12, 086 (2013). https://doi.org/10.1007/JHEP12(2013)086, arXiv:1310.3271

  74. A. Faraggi, L. Pando Zayas, The spectrum of excitations of holographic Wilson loops. JHEP 1105, 018 (2011). https://doi.org/10.1007/JHEP05(2011)018, arXiv:1101.5145

  75. A. Faraggi, W. Mück, L. Pando, Zayas, One-loop effective action of the holographic antisymmetric Wilson loop. Phys. Rev. D 85, 106015 (2012). https://doi.org/10.1103/PhysRevD.85.106015, arXiv:1112.5028

  76. S. Harrison, S. Kachru, G. Torroba, A maximally supersymmetric Kondo model. Class. Quant. Grav. 29, 194005 (2012). https://doi.org/10.1088/0264-9381/29/19/194005, arXiv:1110.5325

    Article  MathSciNet  ADS  Google Scholar 

  77. G. Itsios, K. Sfetsos, D. Zoakos, Fermionic impurities in the unquenched ABJM. JHEP 1301, 038 (2013). https://doi.org/10.1007/JHEP01(2013) 038, arXiv:1209.6617

  78. K. Jensen, S. Kachru, A. Karch, J. Polchinski, E. Silverstein, Towards a holographic marginal fermi liquid. Phys. Rev. D 84, 126002 (2011). https://doi.org/10.1103/PhysRevD.84.126002, arXiv:1105.1772

  79. S. Kachru, A. Karch, S. Yaida, Adventures in holographic dimer models. New J. Phys. 13, 035004 (2011). https://doi.org/10.1088/1367-2630/13/3/035004, arXiv:1009.3268

    Article  ADS  Google Scholar 

  80. S. Kachru, A. Karch, S. Yaida, Holographic lattices, dimers, and glasses. Phys. Rev. D 81, 026007 (2010). https://doi.org/10.1103/PhysRevD.81.026007, arXiv:0909.2639

  81. N. Karaiskos, K. Sfetsos, E. Tsatis, Brane embeddings in sphere submanifolds. Class. Quant. Grav. 29, 025011 (2012). https://doi.org/10.1088/0264-9381/29/2/025011, arXiv:1106.1200

    Article  MathSciNet  ADS  Google Scholar 

  82. H. Matsueda, Multiscale entanglement renormalization Ansatz for Kondo problem. arXiv:1208.2872

  83. W. Mück, The Polyakov loop of anti-symmetric representations as a quantum impurity model. Phys. Rev. D 83, 066006 (2011). https://doi.org/10.1103/PhysRevD.83.066006, https://doi.org/10.1103/PhysRevD.84.129903, arXiv:1012.1973

  84. S. Sachdev, Holographic metals and the fractionalized fermi liquid. Phys. Rev. Lett. 105, 151602 (2010). https://doi.org/10.1103/PhysRevLett.105.151602, arXiv:1006.3794

  85. S. Sachdev, Strange metals and the AdS/CFT correspondence. J. Stat. Mech. 1011, P11022 (2010). https://doi.org/10.1088/1742-5468/2010/11/P11022, arXiv:1010.0682

    Article  Google Scholar 

  86. J. Camino, A. Paredes, A. Ramallo, Stable wrapped branes. JHEP 05, 011 (2001). arXiv:hep-th/0104082

    Google Scholar 

  87. J. Gomis, F. Passerini, Wilson loops as D3-branes. JHEP 0701, 097 (2007). https://doi.org/10.1088/1126-6708/2007/01/097, arXiv:hep-th/0612022

    Article  Google Scholar 

  88. J. Gomis, F. Passerini, Holographic Wilson loops. JHEP 08, 074 (2006). arXiv:hep-th/0604007

    Google Scholar 

  89. J.M. Maldacena, Wilson loops in large N field theories. Phys. Rev. Lett. 80, 4859–4862 (1998). https://doi.org/10.1103/PhysRevLett.80.4859, arXiv:hep-th/9803002

    Article  MathSciNet  ADS  Google Scholar 

  90. S.-J. Rey, J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity. Eur. Phys. J. C 22, 379–394 (2001). https://doi.org/10.1007/s100520100799, arXiv:hep-th/9803001

    Article  MathSciNet  ADS  Google Scholar 

  91. S. Yamaguchi, Wilson Loops of Anti-symmetric Representation and D5-branes. JHEP 0605, 037 (2006). https://doi.org/10.1088/1126-6708/2006/05/037, arXiv:hep-th/0603208

    Article  MathSciNet  Google Scholar 

  92. M. Blake, A. Donos, D. Tong, Holographic charge oscillations. JHEP 04, 019 (2015). https://doi.org/10.1007/JHEP04(2015)019. arXiv:1412.2003

  93. G.T. Horowitz, J.E. Santos, D. Tong, Optical conductivity with holographic lattices. JHEP 07, 168 (2012). https://doi.org/10.1007/JHEP07(2012)168, arXiv:1204.0519

  94. D. Bensimon, A. Jerez, M. Lavagna, Intermediate coupling fixed point study in the overscreened regime of generalized multichannel SU(N) Kondo models. Phys. Rev. B 73, 224445 (2006). https://doi.org/10.1103/PhysRevB.73.224445

  95. P. Nozières, A. Blandin, Kondo effect in real metals. J. Phys. France 41, 193–211 (1980)

    Article  Google Scholar 

  96. T. Senthil, S. Sachdev, M. Vojta, Fractionalized fermi liquids. Phys. Rev. Lett. 90, 216403 (2003). https://doi.org/10.1103/PhysRevLett.90.216403, arXiv:cond-mat/0209144

  97. T. Senthil, M. Vojta, S. Sachdev, Weak magnetism and non-fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004). https://doi.org/10.1103/PhysRevB.69.035111, arXiv:cond-mat/0305193

  98. A. Auerbach, D.P. Arovas, Schwinger Bosons Approaches to Quantum Antiferromagnetism. arXiv:0809.4836

  99. M. Mathur, I. Raychowdhury, R. Anishetty, SU(N) irreducible Schwinger bosons. J. Math. Phys. 51, 093504 (2010). https://doi.org/10.1063/1.3464267, arXiv:1003.5487

    Article  MathSciNet  ADS  Google Scholar 

  100. P. Kraus, Lectures on Black Holes and the AdS(3)/CFT(2) Correspondence. Lecture Notes in Physics 755, 193–247 (2008). arXiv:hep-th/0609074

    MATH  ADS  Google Scholar 

  101. M. Bianchi, D.Z. Freedman, K. Skenderis, Holographic renormalization. Nucl. Phys. B 631, 159–194 (2002). https://doi.org/10.1016/S0550-3213(02)00179-7. arXiv:hep-th/0112119

    Article  MathSciNet  MATH  ADS  Google Scholar 

  102. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001). https://doi.org/10.1007/s002200100381, arXiv:hep-th/0002230

  103. I. Papadimitriou, Holographic renormalization as a canonical transformation. JHEP 11, 014 (2010). https://doi.org/10.1007/JHEP11(2010)014. arXiv:1007.4592

  104. I. Papadimitriou, K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes. JHEP 08, 004 (2005). https://doi.org/10.1088/1126-6708/2005/08/004. arXiv:hep-th/0505190

    Article  MathSciNet  ADS  Google Scholar 

  105. A. Castro, D. Grumiller, F. Larsen, R. McNees, Holographic description of AdS(2) Black Holes. JHEP 0811, 052 (2008). https://doi.org/10.1088/1126-6708/2008/11/052, arXiv:0809.4264

  106. M. Fujita, S. Harrison, A. Karch, R. Meyer, N.M. Paquette, Towards a holographic Bose-Hubbard model. JHEP 04, 068 (2015). https://doi.org/10.1007/JHEP04(2015)068, arXiv:1411.7899

  107. I.R. Klebanov, E. Witten, AdS/CFT correspondence and symmetry breaking. Nucl. Phys. B 556, 89–114 (1999). https://doi.org/10.1016/S0550-3213(99)00387-9, arXiv:hep-th/9905104

    Article  MathSciNet  ADS  Google Scholar 

  108. D. Marolf, S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT. JHEP 11, 085 (2006). arXiv:hep-th/0606113

    Article  ADS  Google Scholar 

  109. C. Fefferman, C.R. Graham, Conformal Invariants, in Elie Cartan et les Mathematiques d’aujourd’hui, p. 95. Asterique, 1985

    Google Scholar 

  110. J. de Boer, E.P. Verlinde, H.L. Verlinde, On the holographic renormalization group. JHEP 08, 003 (2000). https://doi.org/10.1088/1126-6708/2000/08/003, arXiv:hep-th/9912012

    Article  MathSciNet  Google Scholar 

  111. D. Martelli, W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method. Nucl. Phys. B 654, 248–276 (2003). https://doi.org/10.1016/S0550-3213(03)00060-9, arXiv:hep-th/0205061

    Article  MathSciNet  ADS  Google Scholar 

  112. I. Papadimitriou, K. Skenderis, AdS/CFT correspondence and geometry. IRMA Lect. Math. Theor. Phys. 8, 73–101 (2005). https://doi.org/10.4171/013-1/4. arXiv:hep-th/0404176

    Article  MathSciNet  MATH  Google Scholar 

  113. W. Chemissany, I. Papadimitriou, Lifshitz holography: the whole shebang. JHEP 01, 052 (2015). https://doi.org/10.1007/JHEP01(2015)052, arXiv:1408.0795

  114. M. Bianchi, D.Z. Freedman, K. Skenderis, How to go with an RG flow. JHEP 08, 041 (2001). https://doi.org/10.1088/1126-6708/2001/08/041, arXiv:hep-th/0105276

    Article  MathSciNet  ADS  Google Scholar 

  115. M. Henningson, K. Skenderis, The Holographic Weyl anomaly. JHEP 07, 023 (1998). https://doi.org/10.1088/1126-6708/1998/07/023, arXiv:hep-th/9806087

    Article  MathSciNet  Google Scholar 

  116. I. Papadimitriou, K. Skenderis, Correlation functions in holographic RG flows. JHEP 10, 075 (2004). https://doi.org/10.1088/1126-6708/2004/10/075, arXiv:hep-th/0407071

    Article  MathSciNet  Google Scholar 

  117. B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms. JHEP 08, 093 (2011). https://doi.org/10.1007/JHEP08(2011)093, arXiv:1102.2239

  118. B.C. van Rees, Irrelevant deformations and the holographic Callan-Symanzik equation. JHEP 10, 067 (2011). https://doi.org/10.1007/JHEP10(2011)067, arXiv:1105.5396

  119. I. Papadimitriou, Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT. JHEP 0705, 075 (2007). https://doi.org/10.1088/1126-6708/2007/05/075, arXiv:hep-th/0703152

    Article  MathSciNet  Google Scholar 

  120. E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence. arXiv:hep-th/0112258

  121. C. Imbimbo, A. Schwimmer, S. Theisen, S. Yankielowicz, Diffeomorphisms and holographic anomalies. Class. Quant. Grav. 17, 1129–1138 (2000). https://doi.org/10.1088/0264-9381/17/5/322, arXiv:hep-th/9910267

    Article  MathSciNet  ADS  Google Scholar 

  122. A. Schwimmer, S. Theisen, Diffeomorphisms, anomalies and the Fefferman-Graham ambiguity. JHEP 08, 032 (2000). https://doi.org/10.1088/1126-6708/2000/08/032, arXiv:hep-th/0008082

    Article  MathSciNet  Google Scholar 

  123. A. Barut, R. Raczka, Theory of Group Representations and Applications, 2nd edn. (World Scientific Publishing, Singapore, 1986)

    Book  Google Scholar 

  124. G.T. Horowitz, M.M. Roberts, Zero temperature limit of holographic superconductors. JHEP 11, 015 (2009). https://doi.org/10.1088/1126-6708/2009/11/015, arXiv:0908.3677

    Article  Google Scholar 

  125. J. Erdmenger, M. Flory, M.-N. Newrzella, Bending branes for DCFT in two dimensions. JHEP 01, 058 (2015). https://doi.org/10.1007/JHEP01(2015)058, arXiv:1410.7811

  126. C.P. Herzog, D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence. JHEP 03, 046 (2003). https://doi.org/10.1088/1126-6708/2003/03/046, arXiv:hep-th/0212072

    Article  MathSciNet  ADS  Google Scholar 

  127. D.T. Son, A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications. JHEP 09, 042 (2002). https://doi.org/10.1088/1126-6708/2002/09/042. arXiv:hep-th/0205051

    Article  MathSciNet  ADS  Google Scholar 

  128. P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015)

    Google Scholar 

  129. A. Kitaev, A Simple Model of Quantum Holography, talks at the KITP Strings seminar and Entanglement 2015 program (Feb. 12, Apr. 7, and May 27, 2015)

    Google Scholar 

  130. J. Maldacena, D. Stanford, Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016). https://doi.org/10.1103/PhysRevD.94.106002, arXiv:1604.07818

  131. J. Polchinski, V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model. JHEP 04, 001 (2016). https://doi.org/10.1007/JHEP04(2016)001. arXiv:1601.06768

  132. S. Sachdev, J.-W. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993). https://doi.org/10.1103/PhysRevLett.70.3339, arXiv:cond-mat/9212030

    Article  ADS  Google Scholar 

  133. O. Aharony, D. Kutasov, Holographic duals of long open strings. Phys. Rev. D 78, 026005 (2008). https://doi.org/10.1103/PhysRevD.78.026005, arXiv:0803.3547

  134. R. Flint, M. Dzero, P. Coleman, Supplementary material to Heavy electrons and the symplectic symmetry of spin. arXiv:0710.1128

  135. R. Flint, M. Dzero, P. Coleman, Heavy electrons and the symplectic symmetry of spin. Nat. Phys. 4, 643 (2008). https://doi.org/10.1038/nphys1024, arXiv:0710.1126

    Article  ADS  Google Scholar 

  136. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). https://doi.org/10.1016/S0370-1573(99)00083-6, arXiv:hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Probst .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Probst, J. (2018). A Holographic Kondo Model. In: Applications of the Gauge/Gravity Duality. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93967-4_5

Download citation

Publish with us

Policies and ethics