Skip to main content

Entropy Production Fluctuations in Quantum Processes

  • Chapter
  • First Online:
Thermodynamics and Synchronization in Open Quantum Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 761 Accesses

Abstract

In the preceding Chap. 7, we derived a general fluctuation theorem (FT) in detailed and integral form valid for a broad class of CPTP quantum maps, which model a variety of quantum evolutions as we explained in more detail in Chap. 2. In this chapter we clarify and extend these previous results by considering together the system and its surroundings. By tracing over the environment degrees of freedom, we can then recover the quantum map description for the reduced open system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also exclude here the possibility of further implementation of feedback protocols using local measurements and classical communication of the results.

  2. 2.

    Note however that the converse statement is not necessarily true, i.e. we may have for different values of \(\mu \) and \(\nu \) the same value of \(\Delta \phi _{\mu \nu }\)

References

  1. M. Campisi, P. Talkner, P. Hänggi, Fluctuation theorems for continuously monitored quantum fluxes. Phys. Rev. Lett. 105, 140601 (2010)

    Article  ADS  Google Scholar 

  2. M. Esposito, U. Harbola, S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Hatano, S.-I. Sasa, Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  4. U. Seifert, Entropy production along a Stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  5. M. Esposito, C. Van den Broeck, Three detailed fluctuation theorems. Phys. Rev. Lett. 104, 090601 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  7. J.P. Pekola, P. Solinas, A. Shnirman, D.V. Averin, Calorimetric measurement of work in a quantum system. New J. Phys. 15, 115006 (2013)

    Article  ADS  Google Scholar 

  8. S. Gasparinetti, K.L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, J.P. Pekola, Fast electron thermometry for ultrasensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015)

    Article  ADS  Google Scholar 

  9. S. Suomela, A. Kutvonen, T. Ala-Nissila, Quantum jump model for a system with a finite-size environment. Phys. Rev. E 93, 062106 (2016)

    Article  ADS  Google Scholar 

  10. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)

    Article  ADS  Google Scholar 

  11. A.Ü.C. Hardal, Ö.E. Müstecaplıoğlu, Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)

    Google Scholar 

  12. R. Dillenschneider, E. Lutz, Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)

    Article  ADS  Google Scholar 

  13. X.L. Huan, T. Wang, X.X. Yi, Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  14. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  15. L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Quantumenhanced absorption refrigerators. Sci. Rep., 3949 (2014)

    Google Scholar 

  16. D. Reeb, M.M. Wolf, An improved Landauer principle with finite-size corrections. New J. Phys. 16, 103011 (2014)

    Article  ADS  Google Scholar 

  17. J. Goold, M. Paternostro, K. Modi, Nonequilibrium quantum landauer principle. Phys. Rev. Lett. 114, 060602 (2015)

    Article  ADS  Google Scholar 

  18. O. Abah, E. Lutz, Efficiency of heat engines coupled to nonequilibrium reservoirs. Europhys. Lett. 106, 20001 (2014)

    Article  ADS  Google Scholar 

  19. G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  20. W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, On the operation of machines powered by quantum nonthermal baths. New J. Phys. 18, 083012 (2016)

    Article  ADS  Google Scholar 

  21. M. Esposito, K. Lindenberg, C. Van den Broeck, Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Deffner, E. Lutz, Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011)

    Article  ADS  Google Scholar 

  23. T. Sagawa, Second law-like inequalitites with quantum relative entropy: an introduction, in lectures on quantum computing, thermodynamics and statistical physics, in Kinki University Series on Quantum Computing, ed. by M. Nakahara (World Scientific, USA, 2013)

    Google Scholar 

  24. J.M. Horowitz, J.M.R. Parrondo, Entropy production along nonequilibrium quantum jump trajectories. New. J. Phys 15, 085028 (2013)

    Article  ADS  Google Scholar 

  25. B. Leggio, A. Napoli, A. Messina, H.P. Breuer, Entropy production and information fluctuations along quantum trajectories. Phys. Rev. A 88, 042111 (2013)

    Article  ADS  Google Scholar 

  26. S. Deffner, Quantum entropy production in phase space. Europhys. Lett. 103, 30001 (2013)

    Article  ADS  Google Scholar 

  27. K. Funo, Y. Watanabe, M. Ueda, Integral quantum fluctuation theorems under measurement and feedback control. Phys. Rev. E 88, 052121 (2013)

    Article  ADS  Google Scholar 

  28. F. Fagnola, R. Rebolledo, Entropy production for quantum Markov semigroups. Commun. Math. Phys. 335, 547–570 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Esposito, M.A. Ochoa, M. Galperin, Quantum thermodynamics: a nonequilibrium Green’s function approach. Phys. Rev. Lett. 114, 080602 (2015)

    Article  ADS  Google Scholar 

  30. G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Nonequilibrium potential and fluctuation theorems for quantum maps. Phys. Rev. E 92, 032129 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Esposito, C. Van den Broeck, Three faces of the second law. I. Master equation formulation. Phys. Rev. E 82, 011143 (2010)

    Article  ADS  Google Scholar 

  32. C. Van den Broeck, M. Esposito, Three faces of the second law. II. Fokker-Planck formulation. Phys. Rev. E 82, 011144 (2010)

    Article  Google Scholar 

  33. B. Groisman, S. Popescu, A. Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. K. Kraus, A. Böhm, J.D. Dollard, W.H. Wootters, States, Effects, and Operations : Fundamental Notions of Quantum Theory, Lecture notes in physics (Springer, Berlin, 1983)

    Book  Google Scholar 

  35. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 11, 131–139 (2015)

    Article  Google Scholar 

  36. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  37. S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  38. F. Haake, Quantum Signatures of Chaos, 3rd edn. Springer series in synergetics (Springer, Berlin, 2010)

    Book  Google Scholar 

  39. J. Anders, Thermal state entanglement in harmonic lattices. Phys. Rev. A 77, 062102 (2008)

    Article  ADS  Google Scholar 

  40. M. Campisi, P. Hänggi, P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011)

    Article  ADS  Google Scholar 

  41. T. Monnai, Unified treatment of the quantum fluctuation theorem and the Jarzynski equality in terms of microscopic reversibility. Phys. Rev. E 72, 027102 (2005)

    Article  ADS  Google Scholar 

  42. J.M. Horowitz, Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator. Phys. Rev. E 85, 031110 (2012)

    Article  ADS  Google Scholar 

  43. T. Sagawa, M. Ueda, Role of mutual information in entropy production under information exchanges. New J. Phys. 15, 125012 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. G.E. Crooks, Quantum operation time reversal. Phys. Rev. A 77, 034101 (2008)

    Article  ADS  Google Scholar 

  45. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  46. H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227–1230 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  47. J.M. Horowitz, T. Sagawa, Equivalent definitions of the quantum nonadiabatic entropy production. J. Stat. Phys. 156, 55–65 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  48. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  49. A. Rivas, S.F. Huelga, Open Quantum Systems : An Introduction (Springer, Berlin, 2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Manzano Paule .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzano Paule, G. (2018). Entropy Production Fluctuations in Quantum Processes. In: Thermodynamics and Synchronization in Open Quantum Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93964-3_8

Download citation

Publish with us

Policies and ethics