Skip to main content

Noiseless Subsystems and Synchronization

  • Chapter
  • First Online:
Thermodynamics and Synchronization in Open Quantum Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 753 Accesses

Abstract

In the previous chapter we have seen that common dissipation leads to the emergence of mutual synchronization between two oscillators, and we have also shown its relation with the slow decay of quantum correlations. Furthermore, this phenomenon is stronger the closer the natural frequencies of the oscillators are, as in the limiting case of equal frequencies only the normal mode corresponding to the center of mass position, \(\hat{X}_+ = (\hat{x}_1 + \hat{x}_2)/2\), couples to the environment, while the other normal mode, the relative position \(\hat{X}_{-} = (\hat{x}_1 - \hat{x}_2)/2\), is effectively uncoupled from any environmental action, leading to asymptotic entanglement between the two oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results presented in this chapter have been published in Ref. [8].

  2. 2.

    Notice that quantum discord between pairs of oscillators in a global Gibbs state is non-zero due to the coupling between them.

References

  1. J.S. Prauzner-Bechcicki, Two-mode squeezed vacuum state coupled to the common thermal reservoir. J. Phys. A: Math. Gen. 37, L173 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  2. K.-L. Liu, H.-S. Goan, Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments. Phys. Rev. A 76, 022312 (2007)

    Article  ADS  Google Scholar 

  3. J.P. Paz, A.J. Roncaglia, Dynamics of the Entanglement between Two Oscillators in the Same Environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  ADS  Google Scholar 

  4. J.P. Paz, A.J. Roncaglia, Dynamical phases for the evolution of the entanglement between two oscillators coupled to the same environment. Phys. Rev. A 79, 032102 (2009)

    Article  ADS  Google Scholar 

  5. F. Galve, G.L. Giorgi, R. Zambrini, Entanglement dynamics of nonidentical oscillators under decohering environments. Phys. Rev. A 81, 062117 (2010)

    Article  ADS  Google Scholar 

  6. E. Knill, R. Laflamme, L. Viola, Theory of Quantum Error Correction for General Noise. Phys. Rev. Lett. 84, 2525–2528 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. D.A. Lidar, K.B. Whaley, Decoherence-Free Subspaces and Subsystems, in Irreversible Quantum Dynamics, vol. 622, ed. by F. Benatti, R. Floreanini (Springer, Berlin Heidelberg, Germany, 2003), pp. 83–120

    Chapter  Google Scholar 

  8. G. Manzano, F. Galve, R. Zambrini, Avoiding dissipation in a system of three quantum harmonic oscillators. Phys. Rev. A 87, 032114 (2013)

    Article  ADS  Google Scholar 

  9. W.H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  10. W.H. Zurek, Environment-induced superselection rules. Phys. Rev. D 26, 1862 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  11. W.H. Zurek, Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Joos, H.D. Zeh, C. Kiefer, D.J.W. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, Germany, 2003)

    Book  Google Scholar 

  13. M. Schlosshauer, Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005)

    Article  ADS  Google Scholar 

  14. M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin Heidelberg, Germany, 2008)

    MATH  Google Scholar 

  15. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000)

    MATH  Google Scholar 

  16. S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Bchler, P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008)

    Article  Google Scholar 

  17. F. Verstraete, M.M. Wolf, J.I. Cirac, Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009)

    Article  Google Scholar 

  18. J.T. Barreiro, M. Maller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011)

    Article  ADS  Google Scholar 

  19. E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010)

    Article  ADS  Google Scholar 

  20. A.M. Souza, D.O. Soares-Pinto, R.S. Sarthour, I.S. Oliveira, M.S. Reis, P. Brando, A.M. dos Santos, Entanglement and Bell’s inequality violation above room temperature in metal carboxylates. Phys. Rev. B 79, 054408 (2009)

    Article  ADS  Google Scholar 

  21. R. Alicki, Limited thermalization for the Markov mean-field model of N atoms in thermal field. Physica A 150, 455–461 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  22. G.M. Palma, K.-A. Suominen, A.K. Ekert, Quantum Computers and Dissipation. Proc. Roy. Soc. Lon. A 452, 567 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Zanardi, Dissipation and decoherence in a quantum register. Phys. Rev. A 57, 3276–3284 (1998)

    Article  ADS  Google Scholar 

  24. D.A. Lidar, I.L. Chuang, K.B. Whaley, Decoherence-Free Subspaces for Quantum Computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  25. F. Galve, L.A. Pachn, D. Zueco, Bringing Entanglement to the High Temperature Limit. Phys. Rev. Lett. 105, 180501 (2010)

    Article  ADS  Google Scholar 

  26. R. Blume-Kohout, H.K. Ng, D. Poulin, L. Viola, Informationpreserving structures: A general framework for quantum zero-error information. Phys. Rev. A 82, 062306 (2010)

    Article  ADS  Google Scholar 

  27. L.-M. Duan, G.-C. Guo, Preserving Coherence in Quantum Computation by Pairing Quantum Bits. Phys. Rev. Lett. 79, 1953 (1997)

    Article  ADS  Google Scholar 

  28. D. Braun, Creation of Entanglement by Interaction with a Common Heat Bath. Phys. Rev. Lett. 89, 277901 (2002)

    Article  Google Scholar 

  29. M.S. Kim, J. Lee, D. Ahn, P.L. Knight, Entanglement induced by a single-mode heat environment. Phys. Rev. A 65, 040101 (2002)

    Article  ADS  Google Scholar 

  30. J.H. Reina, L. Quiroga, N.F. Johnson, Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002)

    Article  ADS  Google Scholar 

  31. F. Benatti, R. Floreanini, M. Piani, Environment Induced Entanglement in Markovian Dissipative Dynamics. Phys. Rev. Lett. 91, 070402 (2003)

    Article  ADS  Google Scholar 

  32. S. Schneider, G.J. Milburn, Entanglement in the steady state of a collective-angular-momentum (Dicke) model. Phys. Rev. A 65, 042107 (2002)

    Article  ADS  Google Scholar 

  33. N.B. An, J. Kim, K. Kim, Nonperturbative analysis of entanglement dynamics and control for three qubits in a common lossy cavity. Phys. Rev. A 82, 032316 (2010)

    Article  ADS  Google Scholar 

  34. F. Benatti, A. Nagy, Three qubits in a symmetric environment: Dissipatively generated asymptotic entanglement. Ann. Phys. 326, 740–753 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  35. F. Benatti, R. Floreanini, Entangling oscillators through environment noise. J. Phys. A: Math. Theor. 39, 2689 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  36. C.-H. Chou, T. Yu, B.L. Hu, Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. Phys. Rev. E 77, 011112 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Zell, F. Queisser, R. Klesse, Distance Dependence of Entanglement Generation via a Bosonic Heat Bath. Phys. Rev. Lett. 102, 160501 (2009)

    Article  ADS  Google Scholar 

  38. G.-X. Li, L.-H. Sun, Z. Ficek, Multi-mode entanglement of N harmonic oscillators coupled to a non-Markovian reservoir. J. Phys. B: At. Mol. Opt. Phys. 43, 135501 (2010)

    Article  ADS  Google Scholar 

  39. M.A. de Ponte, S.S. Mizrahi, M.H.Y. Moussa, State protection under collective damping and diffusion. Phys. Rev. A 84, 012331 (2011)

    Article  ADS  Google Scholar 

  40. L.A. Correa, A.A. Valido, D. Alonso, Asymptotic discord and entanglement of nonresonant harmonic oscillators under weak and strong dissipation. Phys. Rev. A 86, 012110 (2012)

    Article  ADS  Google Scholar 

  41. G.L. Giorgi, F. Galve, G. Manzano, P. Colet, R. Zambrini, Quantum correlations and mutual synchronization. Phys. Rev. A 85, 052101 (2012)

    Article  ADS  Google Scholar 

  42. P.G. Kwiat, A.J. Berglund, J.B. Altepeter, A.G. White, Experimental Verification of Decoherence-Free Subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  43. L. Viola, E.M. Fortunato, M.A. Pravia, E. Knill, R. Laflamme, D.G. Cory, Experimental Realization of Noiseless Subsystems for Quantum Information Processing. Science 293, 2059–2063 (2001)

    Article  ADS  Google Scholar 

  44. D. Kielpinski, V. Meyer, M.A. Rowe, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, A Decoherence-Free Quantum Memory Using Trapped Ions. Science 291, 1013–1015 (2001)

    Article  ADS  Google Scholar 

  45. T. Monz et al., Realization of Universal Ion-Trap Quantum Computation with Decoherence-Free Qubits. Phys. Rev. Lett. 103, 200503 (2009)

    Article  ADS  Google Scholar 

  46. J.F. Poyatos, J.I. Cirac, P. Zoller, Quantum Reservoir Engineering with Laser Cooled Trapped Ions. Phys. Rev. Lett. 77, 4728–4731 (1996)

    Article  ADS  Google Scholar 

  47. A.R.R. Carvalho, P. Milman, R. L. d. M. Filho, and L. Davidovich, Decoherence, Pointer Engineering, and Quantum State Protection. Phys. Rev. Lett. 86, 4988–4991 (2001)

    Article  ADS  Google Scholar 

  48. H.-P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, New York, USA, 2002)

    MATH  Google Scholar 

  49. R. Bowler, J. Gaebler, Y. Lin, T.R. Tan, D. Hanneke, J.D. Jost, J.P. Home, D. Leibfried, D.J. Wineland, Coherent Diabatic Ion Transport and Separation in a Multizone Trap Array. Phys. Rev. Lett. 109, 080502 (2012)

    Article  ADS  Google Scholar 

  50. P.F. Weck, A. Safavi-Naini, P. Rabl, H.R. Sadeghpour, Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 023412 (2011)

    Article  ADS  Google Scholar 

  51. P.F. Weck, A. Safavi-Naini, P. Rabl, H.R. Sadeghpour, Erratum: Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 069901 (2011)

    Article  ADS  Google Scholar 

  52. C. Henkel, B. Horovitz, Noise from metallic surfaces: Effects of charge diffusion. Phys. Rev. A 78, 042902 (2008)

    Article  ADS  Google Scholar 

  53. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  54. G. Adesso, A. Serafini, F. Illuminati, Quantification and Scaling of Multipartite Entanglement in Continuous Variable Systems. Phys. Rev. Lett. 93, 220504 (2004)

    Article  ADS  Google Scholar 

  55. J. Anders, Thermal state entanglement in harmonic lattices. Phys. Rev. A 77, 062102 (2008)

    Article  ADS  Google Scholar 

  56. A. Rivas, S.F. Huelga, Open Quantum Systems : An Introduction (Springer, Berlin Heidelberg, Germany, 2012)

    Book  Google Scholar 

  57. P. Giorda, M.G.A. Paris, Gaussian Quantum Discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  58. G. Adesso, A. Datta, Quantum versus Classical Correlations in Gaussian States. Phys. Rev. Lett. 105, 030501 (2010)

    Article  ADS  Google Scholar 

  59. A.A. Valido, L.A. Correa, D. Alonso, Gaussian tripartite entanglement out of equilibrium. Phys. Rev. A 88, 012309 (2013)

    Article  ADS  Google Scholar 

  60. A. Serafini, A. Retzker, M.B. Plenio, Manipulating the quantum information of the radial modes of trapped ions: linear phononics, entanglement generation, quantum state transmission and nonlocality tests. New J. Phys. 11, 023007 (2009)

    Article  ADS  Google Scholar 

  61. J.M. Raimond, M. Brune, S. Haroche, Reversible Decoherence of a Mesoscopic Superposition of Field States. Phys. Rev. Lett. 79, 1964 (1997)

    Article  ADS  Google Scholar 

  62. M. Bayindir, B. Temelkuran, E. Ozbay, Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals. Phys. Rev. Lett. 84, 2140 (2000)

    Article  ADS  Google Scholar 

  63. M. Mariantoni, F. Deppe, M.R. Gross, F.K. Wilhelm, E. Solano, Two-resonator circuit quantum electrodynamics: A superconducting quantum switch. Phys. Rev. B 78, 104508 (2008)

    Article  ADS  Google Scholar 

  64. M. Mariantoni et al., Photon shell game in three-resonator circuit quantum electrodynamics. Nat. Phys. 7, 287–293 (2011)

    Article  Google Scholar 

  65. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  Google Scholar 

  66. K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011)

    Article  ADS  Google Scholar 

  67. J. Eisert, M.B. Plenio, S. Bose, J. Hartley, Towards Quantum Entanglement in Nanoelectromechanical Devices. Phys. Rev. Lett. 93, 190402 (2004)

    Article  ADS  Google Scholar 

  68. I. Fischer, R. Vicente, J.M. Buld, M. Peil, C.R. Mirasso, M.C. Torrent, J. Garca-Ojalvo, Zero-Lag Long-Range Synchronization via Dynamical Relaying. Phys. Rev. Lett. 97, 123902 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Manzano Paule .

Appendices

Appendix

A.1 Analytical Derivation of Asymptotic Entanglement

As we pointed in Sect. 1.4.1, all the information about bipartite quantum correlations for a Gaussian continuous-variable state is condensed in its covariance matrix defined through the ten second-order moments of \(\hat{q}_{(A, B)}\) and \(\hat{p}_{(A, B)}\) (in our case first-order moments are initially zero). This bipartite covariance matrix defined for a system of two oscillators A and B, can be written as

$$\begin{aligned} V_{A B}= \left( {\begin{array}{cc} \alpha &{} \gamma \\ \gamma ^{t} &{} \beta \end{array} } \right) , \end{aligned}$$
(A.1)

where \(\alpha , \beta \) and \(\gamma \) are \((2\times 2)\) blocks: \( \alpha (\beta )\) contains the second-order moments of oscillator subsystem A (B), and \(\gamma \) contains correlations of both subsystems. The minimum symplectic eigenvalue (of the covariance matrix corresponding to the partially transposed density matrix), necessary to calculate the logarithmic negativity, is given by

$$\begin{aligned} \nu _{-} = \sqrt{\frac{1}{2}(a + b - 2g - \sqrt{(a + b- 2g)^2 - 4s)}}, \end{aligned}$$
(A.2)

with \(a= 4 \det (\alpha )/\hslash ^2\), \(b= 4 \det (\beta )/\hslash ^2\), \(g= 4 \det (\gamma )/\hslash ^2\) and \(s=16 \det V_{AB}/\hslash ^4\). Normal modes coupled to the environment will reach in the asymptotic limit a thermal state, given by the Gibbs distribution. For a normal mode (k), that is

$$\begin{aligned} \rho _{\mathrm {th}}^{(k)} = \frac{e^{-\frac{\hat{H}_k}{k_B T}}}{\mathrm {Tr}[e^{-\frac{\hat{H}_k}{k_B T}}]}, \end{aligned}$$
(A.3)

with \(\hat{H}_k = \frac{1}{2} \left( \hat{P}_k^2 + \Omega _k^2 \hat{Q}_k^2 \right) \), yielding the second-order moments

$$\begin{aligned} \langle \hat{Q}_k^2 \rangle _{\mathrm {th}}&= \frac{\hslash }{2 \Omega _k} \coth \left( \frac{\hslash \Omega _k}{2 k_B T}\right) , \nonumber \\ \langle \hat{P}_k^2 \rangle _{\mathrm {th}}&= \frac{\hslash \Omega _k}{2} \coth \left( \frac{\hslash \Omega _k}{2 k_B T} \right) , \end{aligned}$$
(A.4)

where \(\Omega _k\) is the corresponding frequency of the normal mode, and T the reservoir temperature. On the other hand, the uncoupled modes evolve freely. This means that the asymptotic covariance matrix can be calculated by expressing all second-order moments of natural oscillators in terms of the normal modes, and then substituting the asymptotic expressions corresponding to free modes or thermalized ones.

The covariance matrix in the asymptotic limit can be separated into three parts corresponding to the contributions of each normal mode, which we call \(V_i\), for \(i= 1, 2, 3\). In terms of the blocks we have

$$\begin{aligned} \alpha = \sum _{i=1}^3 \mathcal {F}_{A i}^2 V_i, ~~~~ \beta = \sum _{i=1}^2 \mathcal {F}_{B i}^2 V_i, ~~~~ \gamma = \gamma ^T = \sum _{i=1}^2 {\mathcal {F}}_{A i} {\mathcal {F}}_{B i} V_i, \end{aligned}$$
(A.5)

where \(V_i\) can correspond either to a non-dissipative, or to a dissipative mode. For a non-dissipative normal mode, say n, we have:

$$\begin{aligned} V_{\mathrm {no-diss}}= \left( {\begin{array}{cc} \langle \hat{Q}_n^2 \rangle &{} \frac{\langle \{ \hat{Q}_n , \hat{P}_n \} \rangle }{2} \\ \frac{\langle \{ \hat{Q}_n , \hat{P}_n \} \rangle }{2} &{} \langle \hat{P}_n^2 \rangle \end{array} } \right) , \end{aligned}$$
(A.6)

and for a dissipative one, say k, we get

$$\begin{aligned} V_{\mathrm {diss}}= \left( {\begin{array}{cc} \langle \hat{Q}_k^2 \rangle _{\mathrm {th}} &{} 0 \\ 0 &{} \langle \hat{P}_k^2 \rangle _{\mathrm {th}} \end{array} } \right) . \end{aligned}$$
(A.7)

While elements in \(V_{\mathrm {diss}}\) are given by the expressions (A.4), those of \(V_{\mathrm {no-diss}}\) are the ones corresponding to a free evolution of an harmonic oscillator. This analysis gives all the necessary elements in order to calculate the asymptotic entanglement for pairs of oscillators in every particular situation, in which one or two of the normal modes are uncoupled from the environmental action.

1.1 A.1.1 One-Mode NS

Consider the specific case of an open chain \((\lambda _{1 3}=0)\) in which we have two equal frequencies \((\omega _1 = \omega _3 \equiv \omega )\) and two equal couplings \((\lambda _{1 2} = \lambda _{2 3} \equiv \lambda \ne 0)\) [Fig. 5.1a in Sect. 5.3]. In this case we get only one normal mode decoupled from the bath. In order to calculate the expression of the minimum symplectic eigenvalue, we have to first calculate the elements of the three normal modes, that are shown here as vector columns

$$\begin{aligned} {\mathbf C}_{\delta } = \frac{1}{\sqrt{2}} \left( {\begin{array}{cc} 1\\ 0 \\ -1 \end{array}} \right) ,~~~~~~~~ {\mathbf C}_{\pm } = c_{\pm } \left( {\begin{array}{cc} \lambda \\ \Omega _{\pm }^2 - \omega ^2 \\ \lambda \end{array}} \right) . \end{aligned}$$

Here we have labeled the non-dissipative mode as \(\delta \) and the other two modes as \(\{\pm \}\). Their corresponding frequencies are \(\Omega _\delta = \omega \) and \(\Omega _{\pm } = \sqrt{(\omega _2^2 + \omega ^2)/2 \pm \sqrt{\Delta }}\), defining \(\Delta \equiv (\frac{\omega _2^2 - \omega ^2}{2})^2 + 2\lambda ^2\), and \(c_{\pm }\) being nothing but a normalization constant. We can now obtain all the terms appearing in \(V_{\pm }\).

The initial condition given in Eq. (5.27), can be now rewritten in terms of the non-dissipative normal mode as

$$\begin{aligned} \langle \hat{Q}_\delta ^2 (0) \rangle = \frac{\hslash }{2 \omega } e^{-2 r}, ~~~ \langle \hat{P}_\delta ^2 (0) \rangle = \frac{\hslash \omega }{2} e^{2 r}, ~~~ \langle \{ \hat{Q}_\delta , \hat{P}_\delta \}(0) \rangle = 0, \end{aligned}$$

and then their free evolution is given by

$$\begin{aligned}&\langle Q_{\delta }^{2}\rangle = \frac{\hslash }{2 \omega } (e^{2r}\sin ^{2}(\omega t) + e^{-2r}\cos ^{2}(\omega t)), \nonumber \\&\langle P_{\delta }^{2}\rangle = \frac{\hslash \omega }{2} (e^{-2r}\sin ^{2}(\omega t) + e^{2r}\cos ^{2}(\omega t)), \nonumber \\&\langle \{Q_\delta ,P_\delta \} \rangle = 2 \hslash \sinh (2r) \cos (\omega t)\sin (\omega t), \end{aligned}$$
(A.8)

where we have already used that \(\Omega _\delta = \omega \). By substituting the above expressions in \(V_{\mathrm {no-diss}}\) [Eq. (A.6)] we can now obtain the expressions of the determinants a, b, g and s. This yields for the minimum symplectic eigenvalue [Eq. (A.2)]:

$$\begin{aligned} \frac{\nu _{-}(t)^2}{ 2 \lambda ^2} = \mathcal{{G}}_0 + \mathcal{{G}}_1\cos (2 \omega t) - \sqrt{\left( \mathcal{{G}}_0 + \mathcal{{G}}_1\cos (2 \omega t) \right) ^2 - 4\sigma _P \sigma _Q }, \end{aligned}$$
(A.9)

which is an oscillatory function with frequency \(2\omega \). Here

$$\begin{aligned} \mathcal{{G}}_0 = (\sigma _Q + \sigma _P) \cosh (2 r), ~~~~~ \mathcal{{G}}_1 = (\sigma _Q - \sigma _P) \sinh (2 r), \end{aligned}$$

and the dependence on the bath temperature and on the shape of the dissipative normal modes is given by

$$\begin{aligned}&\sigma _P = \frac{\Omega _{+}}{2 \omega } c_{+}^2 \coth \left( \frac{\Omega _{+}}{2 T} \right) + \frac{\Omega _{-}}{2 \omega } c_{-}^2 \coth \left( \frac{\Omega _{-}}{2 T} \right) , \nonumber \\&\sigma _Q = \frac{\omega }{2 \Omega _{+}} c_{+}^2 \coth \left( \frac{\Omega _{+}}{2 T} \right) + \frac{\omega }{2 \Omega _{-}} c_{-}^2 \coth \left( \frac{\Omega _{-}}{2 T} \right) . \end{aligned}$$
(A.10)

From Eq. (A.9), we can obtain the minimum entanglement (obtained for \(t=(2n+1)\frac{\pi }{2 \omega };~ n=1,2,3,\ldots \)) and the maximum one (for \(t=(n+1)\frac{\pi }{\omega };~ n=1,2,3,\ldots \)) in order to recover Eq. (5.29) with the proper definitions specified there.

1.2 A.1.2 Two-Mode NS

On the other hand, if we move to situation represented in Fig. 5.1e of Sect. 5.3 by fixing \(\lambda = \tilde{\lambda }_0\) [see Eq. (5.25)], we have that the normal modes transform into

$$\begin{aligned} {\mathbf C}_{\delta } = \frac{1}{\sqrt{2}} \left( {\begin{array}{cc} 1\\ 0 \\ -1 \end{array}} \right) ,~~~ {\mathbf C}_{\varepsilon } = \frac{1}{\sqrt{6}} \left( {\begin{array}{cc} 1\\ -2 \\ 1 \end{array}} \right) ,~~~ {\mathbf C}_{\mathrm {c. m.}} = \frac{1}{\sqrt{3}} \left( {\begin{array}{cc} 1 \\ 1 \\ 1 \end{array}} \right) , \end{aligned}$$

being the center of mass, \({\mathbf C}_{\mathrm {c. m.}}\), the only dissipative mode. Their corresponding frequencies are respectively

$$\begin{aligned} \Omega _\delta = \omega , ~~~ \Omega _\varepsilon = \sqrt{2\omega _2^2 - \omega ^2}, ~~~ \Omega _{\mathrm {c. m.}} = \sqrt{2 \omega ^2 - \omega _2^2}. \end{aligned}$$
(A.11)

Naturally, we have to restrict ourselves to the regime \(2\omega _3^2> \omega > \omega _3^2/2\) in order for these quantities to be real and positive.

Keeping the same initial condition as in the previous case, we have that nothing changes in the expression of the free evolution of mode \(\delta \) [Eq. (A.8)], while the free evolution of mode \(\varepsilon \) is given by

$$\begin{aligned}&\langle \hat{Q}_{\varepsilon }^{2}\rangle = \frac{2\omega _2 + \omega }{6 \Omega _\varepsilon ^2} \hslash e^{2r} \sin ^{2}(\Omega _\varepsilon t) + \frac{2\omega + \omega _2}{6 \omega \omega _2} \hslash e^{-2r}\cos ^{2}(\Omega _\varepsilon t), \\&\langle \hat{P}_{\varepsilon }^{2}\rangle = \frac{2\omega + \omega _2 \Omega _\varepsilon ^2}{6 \omega \omega _2} \hslash e^{-2r} \sin ^{2}(\Omega _\varepsilon t) + \frac{2 \omega _2 + \omega }{6} \hslash e^{2r}\cos ^{2}(\Omega _\varepsilon t), \\&\langle \{\hat{Q}_\varepsilon , \hat{P}_\varepsilon \}\rangle = \left( \frac{2\omega _2 + \omega }{3 \Omega _\varepsilon }e^{2r} - \frac{(2\omega + \omega _2)\Omega _\varepsilon }{3 \omega \omega _2} e^{-2r}\right) \times \\&~~~~~~~~~~~~~~~~~~~~ \times \hslash \cos (\Omega _\varepsilon t)\sin (\Omega _\varepsilon t). \end{aligned}$$

We have assumed the same squeezing parameter r in the central oscillator of the chain (notice that in the previous case the initial state of the central oscillator is not relevant and then we did not specify it). Following the same procedure as above, we calculate the expression for the minimum symplectic eigenvalue. It is worth noticing that in this case we have two contributions to the determinants of the free type \(V_{\mathrm {no-diss}}\) [Eq.  (A.6)], corresponding to the two non dissipative modes, and a single dissipative one \(V_{\mathrm {diss}}\) [Eq.  (A.7)], corresponding to the center of mass mode.

The minimum symplectic eigenvalue yields:

$$\begin{aligned} 2 \nu _{-}(t)^2 = \mathcal{{A}}_0 + \mathcal{{A}}_1(t) - \sqrt{\left( \mathcal{{A}}_0 + \mathcal{{A}}_1(t) \right) ^2 - \mathcal{{B}}_0 - \mathcal{{B}}_1(t)} \end{aligned}$$
(A.12)

where we have defined the following quantities in order to simplify the expression. The constant terms

$$\begin{aligned} \mathcal{{A}}_0&\equiv ~\cosh (2 r) \left( 4 (\sigma _Q + \sigma _P) + \mathcal {J}_{+}(\Omega _{\varepsilon }^2 + \omega ^2) \right) , \\ \mathcal{{B}}_0&\equiv ~64 \sigma _P \sigma _Q + \frac{4(\omega + \omega _2)^2}{81 \omega \omega _2} + \frac{32 \Omega _{\varepsilon } \omega \mathcal {J}_{+}}{3} \left( \frac{\omega \sigma _P}{\Omega _\varepsilon } + \frac{\Omega _\varepsilon \sigma _Q}{\omega } \right) , \end{aligned}$$

and the oscillating terms

$$\begin{aligned} \mathcal{{A}}_1(t) \equiv&~4 \cos (2 \omega t) \sinh (2 r) (\sigma _Q - \sigma _P) \\&+ \mathcal {J}_{+} \cos (2 \omega t) \sinh (2 r)(\Omega _\varepsilon ^2 + \omega ^2) \\&+ \mathcal {J}_{-} \cos (2 \Omega _{\varepsilon } t) \cosh (2r) (\Omega _\varepsilon ^2 - \omega ^2) \\&- \mathcal {J}_{-} \cos (2 (\Omega _\varepsilon - \omega ) t) \sinh (2r) \frac{(\Omega _\varepsilon + \omega )^2}{2} \\&- \mathcal {J}_{-} \cos (2 (\Omega _\varepsilon + \omega ) t) \sinh (2r) \frac{(\Omega _\varepsilon - \omega )^2}{2}, \\ \mathcal{{B}}_1(t) \equiv&~\cos (2 \Omega _\varepsilon t) \frac{32 \Omega _{\varepsilon } \omega \mathcal {J}_{+}}{3} \left( \frac{\Omega _\varepsilon \sigma _Q}{\omega } - \frac{\omega \sigma _P}{\Omega _\varepsilon } \right) , \end{aligned}$$

where different frequencies coming from the two non-dissipative modes are present. We have used \(\mathcal {J}_{\pm } \equiv \frac{1}{12 \omega } \left( e^{2 r} \frac{2\omega _2 + \omega }{\Omega _\varepsilon ^2} \pm e^{-2 r}\frac{2\omega + \omega _2}{\omega \omega _2} \right) \) and the two bath-dependent functions are now given by the contribution of the c.m. mode:

$$\begin{aligned}&\sigma _P = \frac{\Omega _{\mathrm {c. m.}}}{6 \omega } \coth \left( \frac{\hslash \Omega _{\mathrm {c. m.}}}{2 k_B T} \right) , \nonumber \\&\sigma _Q = \frac{\omega }{6 \Omega _{\mathrm {c. m.}}} \coth \left( \frac{\hslash \Omega _{\mathrm {c. m.}}}{2 k_B T} \right) . \end{aligned}$$
(A.13)

A.2 Equations of Motion for the Second-Order Moments

As we are interested in classical and quantum correlations of the system oscillators, a description for the evolution of the first-order and second-order moments is necessary. The equations of motion for position, momenta, and the variances can be obtained from the Markovian master equation governing the dissipative dynamics, (5.39). In analogy to the case of two oscillators (Chap. 4) they can be indeed written in a simple form as \(\dot{\mathbf {R}}= \mathcal {M}{\mathbf {R}}+{\mathbf N}\), where \(\mathbf {R}\) is a column vector, now containing the \(M= (2N + 1)N\) for \(N=3\) independent second-order moments of the normal modes. The matrix \(\mathcal {M}\) condenses all the information about their dynamical evolution and \({\mathbf N}\) determines the stationary values for long times (when \(\dot{\mathbf {R}} = 0\)). The dynamics of \(\mathbf {R}\) can be solved in terms of the eigenvalues of \(\mathcal {M}\):

$$\begin{aligned} \{{\mu _{i j}}\}=\{ -\frac{\Gamma _{i}+\Gamma _{j}}{2} \pm i\left| \Omega _i \pm \Omega _j\right| \},~~~ i \le j \end{aligned}$$
(A.14)

where the \(i=j\) eigenvalues determine the evolution of \(\langle \hat{Q}_i^2 \rangle \), \(\langle \hat{P}_i^2 \rangle \) and \(\langle \{\hat{Q}_i, \hat{P}_i\} \rangle \), while the ones with \(i \ne j\) determine that of \(\langle \hat{Q}_i \hat{Q}_j \rangle \), \(\langle \hat{P}_i \hat{P}_j \rangle \) and \(\langle \{\hat{Q}_i, \hat{P}_j\} \rangle \). Note that by virtue of Eqs. (5.40) and (A.14) the decay of the normal modes is entirely governed by the effective couplings mentioned above, thus differences in their magnitude produce disparate temporal scales for the dissipation and diffusion of normal modes.

We further stress that the stationary state of the dynamics is found to be \((\mathbf {R}_\infty = \mathcal {M}^{-1} {\mathbf N})\):

$$\begin{aligned}&\langle \hat{Q}_i^2 \rangle _\infty = \frac{D_i}{2 \Gamma _i \Omega _i^2}= \frac{\hslash }{2 \Omega _i} \coth \left( \frac{\Omega _i}{2 k_B T}\right) , \\&\langle \hat{P}_i^2 \rangle _\infty = \frac{D_i}{2 \Gamma _i} = \frac{\hslash \Omega _i}{2} \coth \left( \frac{\Omega _i}{2 k_B T} \right) , \end{aligned}$$

being all the other second-order moments equal to zero. Note that these expressions for the asymptotic limit recover the thermal state of the system at the bath temperature T given by the Gibbs distribution in Eq. (A.4).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzano Paule, G. (2018). Noiseless Subsystems and Synchronization. In: Thermodynamics and Synchronization in Open Quantum Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93964-3_5

Download citation

Publish with us

Policies and ethics