Skip to main content

From Music to Mathematics and Backwards: Introducing Algebra, Topology and Category Theory into Computational Musicology

  • Chapter
  • First Online:
Imagine Math 6

Abstract

Despite a long historical relationship between mathematics and music, the interest of mathematicians is a recent phenomenon. In contrast to statistical methods and signal-based approaches currently employed in MIR (Music Information Research), the research project described in this paper stresses the necessity of introducing a structural multidisciplinary approach into computational musicology making use of advanced mathematics. It is based on the interplay between three main mathematical disciplines: algebra, topology and category theory. It therefore opens promising perspectives on important prevailing challenges, such as the automatic classification of musical styles or the solution of open mathematical conjectures, asking for new collaborations between mathematicians, computer scientists, musicologists, and composers. Music can in fact occupy a strategic place in the development of mathematics since music-theoretical constructions can be used to solve open mathematical problems. The SMIR project also differs from traditional applications of mathematics to music in aiming to build bridges between different musical genres, ranging from contemporary art music to popular music, including rock, pop, jazz and chanson. Beyond its academic ambition, the project carries an important societal dimension stressing the cultural component of ‘mathemusical’ research, that naturally resonates with the underlying philosophy of the “Imagine Maths” conference series. The article describes for a general public some of the most promising interdisciplinary research lines of this project.

This paper provides an overview of the ongoing SMIR (Structural Music Information Research) Project, supported by the University of Strasbourg Institute for Advanced Study and carried on at the Institut de Recherche Mathématique Avancée (IRMA) in collaboration with the GREAM (Groupe de Recherche Expérimentale sur l’Acte Musical) and the Institut de Recherche et Coordination Acoustique/Musique (IRCAM). For a description of the institutional aspects of the project, including the list of participants and past and future events, see the official webpage: http://repmus.ircam.fr/moreno/smir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://repmus.ircam.fr/moreno/production for the complete list of students’ work focusing on these aspects of the relations between music and mathematics.

  2. 2.

    This interplay also provides a further example of the duality between temporal and spatial constructions which are the two fundamental ingredients of music according to the field medalist Alain Connes. As he suggested in a conversation with composer Pierre Boulez on the analogy and the difference between the creative processes in mathematics and music: “Concerning music, it takes place in time, like algebra. In mathematics, there is this fundamental duality between, on the one hand, geometry—which corresponds to the visual arts, an immediate intuition—and on the other hand algebra. This is not visual, it has a temporality. This fits in time, it is a computation, something that is very close to the language, and which has its diabolical precision. […] And one only perceives the development of algebra through music” [15].

  3. 3.

    As largely documented, these three aspects are deeply interconnected, particularly in Twentieth-Century music and musicology. See [3] for a detailed account of music-theoretical, analytical and compositional applications of the algebraic methods in contemporary music research.

  4. 4.

    See [7] for a description of Tiling Canons as a key to approach open Mathematical Conjectures.

  5. 5.

    See http://www.smcm-net.info/.

  6. 6.

    See http://www.tandfonline.com/toc/tmam20/current.

  7. 7.

    This approach takes origin in the writings of the German musicologist Hugo Riemann who proposed a “dualistic” perspective of Euler’s Tone System [23] based on inversional relations between major and minor chords. After a first algebraic formalisation by David Lewin through the concept of GIS or Generalized Interval System [26], neo-Riemannian theory and analysis has progressively integrated mathematical concepts belonging to topology and algebraic geometry [11] and shown its relevance to the analysis of a popular music repertoire [13].

  8. 8.

    To the class of “musically-relevant” groups acting on the family of all possible chords belong groups such as the cyclic group of order 12 (or group of transpositions), the dihedral group of order 24 (or group of transposition and inversions) and the affine group of order 48 (or group of “augmentation”, i.e. applications \(f \) of the form \(f(x)=ax + b\), where \(a \) belongs to the set of invertible elements of \(\mathbf{Z} _{\mathbf{12}}\) and \(b\) is any possible transposition factor). By using a term which has a strong philosophical meaning [25], we suggested to call “paradigmatic” a classification approach of musical structures based on an underlying group action [3]. This provides an elegant formalization of the most common chord catalogues, from Anatol Vieru’s catalogue of transposition classes of chords [42] to Mazzola/Morris catalogue of affine orbits [27, 31], including Julio Estrada’s catalogue of “identities” [17].

  9. 9.

    Category theory was originally introduced in music theory by Guerino Mazzola in his dissertation Gruppen und Kategorien in der Musik [27] and further extended in Geometrie der Töne [28] and The Topos of Music [29]. For an alternative approach to the categorical formalization of music theory, see Fiore and Noll [18] and our series of papers dealing with the categorical interpretation of Klumpenhouwer Networks, initially within the framework of Topos of Music [30] and, successively, through the set-up of generalized K-nets called “Poly-Klumpenhouwer Networks” [3537].

  10. 10.

    See, in particular, the article “Contenus formels et dualité”, reprinted in [21].

  11. 11.

    See [24] as well as Piaget’s posthumous Morphismes et catégories [34].

References

  1. E. Acotto, M. Andreatta, Between mind and mathematics. Different kinds of computational representations of music. Math. Soc. Sci. 199, 9–26 (2012)

    MATH  Google Scholar 

  2. E. Amiot, Music Through Fourier Space: Discrete Fourier Transform in Music Theory. Computational Music Science (Springer, Heidelberg, 2016)

    Book  Google Scholar 

  3. M. Andreatta, Méthodes algébriques dans la musique et musicologie du XXe siècle: aspects théoriques, analytiques et compositionnels. PhD thesis in computational musicology, Ecole des hautes études en sciences sociales/IRCAM, Paris (2003)

    Google Scholar 

  4. M. Andreatta, Mathematica est exercitium musicae. La recherche ‘mathémusicale’ et ses interactions avec les autres disciplines. Habilitation Thesis, IRMA/University of Strasbourg (2010)

    Google Scholar 

  5. M. Andreatta, C. Agon (eds.), Special Issue “Tiling Problems in Music”. J. Math. Music 3(2) (2009).

    Google Scholar 

  6. M. Andreatta, A. Ehresmann, R. Guitart, G. Mazzola, Towards a categorical theory of creativity, in Mathematics and Computation in Music 2013, ed. by J. Yust, J. Wild, J.A. Burgoyne. LNCS/LNAI, vol. 7937 (Springer, Heidelberg, 2013), pp. 19–37

    Chapter  Google Scholar 

  7. M. Andreatta, Tiling Canons as a key to approach open mathematical conjectures? in Mathemusical Conversations, ed. by E. Chew et al.(Wiley, New York, 2016), pp. 86–104

    Chapter  Google Scholar 

  8. M. Andreatta, G. Baroin, Formal and computational models in popular music, in Aesthetics & Neurosciences: Scientific and Artistic Perspectives, ed. by Z. Kapoula et al.(Springer, Berlin, 2016), pp. 257–269

    Chapter  Google Scholar 

  9. G. Assayag, J.F. Rodrigues, H.G. Feichtinger (eds.), Mathematics and Music: A Diderot Mathematical Forum (Springer, Berlin, 2002)

    MATH  Google Scholar 

  10. J. Atif, I. Bloch, F. Distel, C. Hudelot, Mathematical morphology operators over concept lattices, in Formal Concept Analysis. ICFCA 2013, ed. by P. Cellier, F. Distel, B. Ganter. Lecture Notes in Computer Science, vol. 7880 (Springer, Berlin, 2013)

    MATH  Google Scholar 

  11. M. Bergomi, Dynamical and topological tools for (modern) music analysis. PhD thesis, UPMC/LIM, Milan (2015)

    Google Scholar 

  12. M. Bergomi, F. Fabbri, M. Andreatta, Hey Maths! Modèles formels et computationnels au service des Beatles. Volume! La revue des musiques populaires, ed. by G. Tosser, O. Julien (2015), pp. 161–177

    Google Scholar 

  13. L. Bigo, M. Andreatta, Topological structures in computer-aided music analysis, in Computational Music Analysis, ed. by D. Meredith (Springer, Berlin, 2015), pp. 57–80

    MATH  Google Scholar 

  14. L. Bigo, D. Ghisi, A. Spicher, M. Andreatta, Spatial transformations in simplicial chord spaces, in Proceedings ICMC/SMC, ed. by A. Georgaki, G. Kouroupetroglou, Athens, Greece (2014), pp. 1112–1119

    Google Scholar 

  15. P. Boulez, A. Connes, Creativity in music and mathematics. A meeting organized within the Mathematics and Computation in Music Conference at IRCAM, 15 June 2011. Video available at http://agora2011.ircam.fr

  16. A.C. Ehresmann, J.-P. Vanbremeersch, Memory Evolutive Systems: Hierarchy, Emergence, Cognition (Elsevier, Amsterdam, 2007)

    MATH  Google Scholar 

  17. J. Estrada, Théorie de la composition: discontinuum-continuum. PhD thesis, Université de Strasbourg (1994)

    Google Scholar 

  18. T. Fiore, T. Noll, Commuting groups and the topos of triads, in Mathematics and Computation in Music 2011, ed. by C. Agon, E. Amiot, M. Andreatta, G. Assayag, J. Bresson, J. Mandereau. LNCS/LNAI, vol. 6726 (Springer, Heidelberg, 2011), pp. 69–83

    Chapter  Google Scholar 

  19. A. Freund, M. Andreatta, J.-L. Giavitto, Lattice-based and topological representations of binary relations with an application to music. Ann. Math. Artif. Intell. 73(3–4), 311–334 (2015)

    Article  MathSciNet  Google Scholar 

  20. B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations (Springer, Berlin, 1998)

    MATH  Google Scholar 

  21. G.-G. Granger, Formes, Opérations, Objets (Librairie Philosophique J. Vrin, Paris, 1994)

    MATH  Google Scholar 

  22. G.S. Halford, W.H. Wilson, A category-theory approach to cognitive development. Cogn. Psychol. 12, 356–411 (1980)

    Article  Google Scholar 

  23. H. Hascher, A. Papadopoulos (eds.), Leonhard Euler. Mathématicien, Physicien et Théoricien de la Musique (Editions du CNRS, Paris, 2015)

    MATH  Google Scholar 

  24. O. Houdé, La référence logico-mathématique en psychologie: entre méthode universelle et rationalité arrogante, in Pensée Logico-Mathématique, Nouveaux Objets Interdisciplinaires, ed. by O. Houdé (Presses Universitaires de France, Paris, 1993), pp. 47–119

    Google Scholar 

  25. T. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 1962)

    Google Scholar 

  26. D. Lewin, Generalized Musical Intervals and Transformations (Yale University Press, New Haven, 1987)

    Google Scholar 

  27. G. Mazzola, Gruppen und Kategorien in der Musik (Hermann, Paris, 1985)

    MATH  Google Scholar 

  28. G. Mazzola, Geometrie der Toene (Birkhäuser, Basel, 1990)

    Google Scholar 

  29. G. Mazzola, The Topos of Music (Birkhäuser, Basel, 2002)

    Book  Google Scholar 

  30. G. Mazzola, M. Andreatta, From a categorical point of view: K-nets as limit denotators. Perspect. New Music 44(2), 88–113 (2006)

    Google Scholar 

  31. R. Morris, Composition with Pitch-Classes: A Theory of Compositional Design (Yale University Press, New Haven, 1988)

    Google Scholar 

  32. S. Phillips, W.H. Wilson, Categorical compositionality: a category theory explanation for the systematicity of human cognition. PLoS Comput. Biol. 6(7), 1–14 (2010)

    Article  MathSciNet  Google Scholar 

  33. J. Piaget, in Traité de Logique, Essai de Logistique Opératoire, (A. Colin, Paris, 1949)

    Google Scholar 

  34. J. Piaget, G. Henriques, E. Ascher, Morphismes et Catégories: Comparer et Transformer (Delachaux et Niestlé, Lausanne, 1990)

    Google Scholar 

  35. A. Popoff, M. Andreatta, A. Ehresmann, A categorical generalization of Klumpenhouwer networks, in Mathematics and Computation in Music 2015, ed. by T. Collins, D. Meredith, A. Volk. LNCS/LNAI, vol. 9110 (Springer, Heidelberg, 2015), pp. 303–314

    Chapter  Google Scholar 

  36. A. Popoff, C. Agon, M. Andreatta, A. Ehresmann, From K-nets to PK-nets: a categorical approach. Perspect. New Music 54(2), 5–63 (2017)

    Article  Google Scholar 

  37. A. Popoff, M. Andreatta, A. Ehresmann, Relational PK-Nets for transformational music analysis. J. Math. Music 12(1) (2018, in press). arXiv:1611.02249

  38. P. Relaño, Morphologie mathématique, FCA et musicologie computationnelle. Master thesis, ENS-Lyon/LTCI/Télécom ParisTech/LAMSADE, Université Paris Dauphine/IRCAM-CNRS-UPMC (2017)

    Google Scholar 

  39. T. Schlemmer, M. Andreatta, Using formal concept analysis to represent chroma systems, in Mathematics and Computation in Music 2013, ed. by J. Yust, J. Wild, J.A. Burgoyne. LNCS/LNAI, vol. 7937 (Springer, Heidelberg, 2013), pp. 189–200

    Chapter  Google Scholar 

  40. J. Serra, Image Analysis and Mathematical Morphology (Academic Press, London, 1982)

    MATH  Google Scholar 

  41. X. Serra, M. Magas, E. Benetos, M. Chudy, S. Dixon, A. Flexer, E. Gómez, F. Gouyon, P. Herrera, S. Jorda, O. Paytuvi, G. Peeters, J. Schlüter, H. Vinet, G. Widmer, Roadmap for music information ReSearch, in Creative Commons BY-NC-ND 3.0 License, ed. by G. Peeters (2013), 978-2-9540351-1-6

    Google Scholar 

  42. A. Vieru, Cartea Modurilor, 1 (Le Livre des Modes, 1) (Muzicala, Bucarest, 1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moreno Andreatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andreatta, M. (2018). From Music to Mathematics and Backwards: Introducing Algebra, Topology and Category Theory into Computational Musicology. In: Emmer, M., Abate, M. (eds) Imagine Math 6. Springer, Cham. https://doi.org/10.1007/978-3-319-93949-0_7

Download citation

Publish with us

Policies and ethics