Synchronization of Chaotic Systems by Means of a Nonlinear Observer: An Application to Secure Communications

  • Rafael Martínez-GuerraEmail author
  • Claudia Alejandra Pérez-Pinacho
Part of the Understanding Complex Systems book series (UCS)


Applications of the synchronization phenomenon of dynamical systems are important in several applications as in technology and have a wealth of science. Some applications of master–slave synchronization include the control of chaos and chaotic signal masking, where several methodologies have been considered (Martínez-Guerra, Rafael, and Wen Yu, Int J Bifurcation Chaos, 18(01), pp 235–243, 2008, [1]), (Hernault, Barbot, Ouslimani, IEEE Trans Circ Syst I: Regular Papers 55, 614, 2008, [2]). Nonetheless, it has been established that synchronization of chaotic dynamical systems is not only possible but it is believed to have potential applications in communication (Mitra, Banerjee, Int J Mod Phys B 25, 521, 2011, [3]), (Saha, Banerjee, Roy Chowdhury, Phys Lett Sect A: General, Atomic Solid State Phys 326, 133, 2004, [4]). The strategy is that when is transmitted a message; it is possible to mask it with louder chaos. An outside listener only detects the chaos, which signals like meaningless noise. But if the receiver has an adequate synchronization algorithm that perfectly reproduces the chaos, the receiver can subtract off the chaotic mask and detect the original message.


  1. 1.
    Martínez-Guerra, Rafael, and Wen Yu, Chaotic synchronization and secure communication via sliding-mode observer. International Journal of Bifurcation and Chaos, 18(01), pp-235–243, (2008)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.L. Hernault, J.P. Barbot, A. Ouslimani, IEEE Trans. Circ. Syst. I: Regular Papers 55, 614 (2008)Google Scholar
  3. 3.
    M. Mitra, S. Banerjee, Int. J. Mod. Phys. B 25, 521 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    P. Saha, S. Banerjee, A. Roy Chowdhury, Phys. Lett. Sect. A: General, Atomic Solid State Phys. 326, 133 (2004)Google Scholar
  5. 5.
    Z.P. Jiang, IEEE Trans. Circ. Syst. I. Fund. Theory Appl. 44, 92 (2002)CrossRefGoogle Scholar
  6. 6.
    K.M Cuomo, A.V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Baptista, S.P. Garcia, S.K. Dana, J. Kurths, Eur. Phys. J. Special Topics 165, 119 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    M.T. Yassen, Chaos, Solitons Fractals 15, 271 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Lu, S.C. Zhang, Phys. Lett. A 286, 148 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    G. Chen, T. Ueta, Int. J. Bif. Chaos 9, 1465 (1999)CrossRefGoogle Scholar
  11. 11.
    N. Hemati, IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 41, 40 (1994)Google Scholar
  12. 12.
    H. Haken, Phys. Lett. A 53,77 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    E. Knobloch, Phys. Lett. A 82, 439 (1981)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Poland, Phys. D 65, 86 (1993)CrossRefGoogle Scholar
  15. 15.
    J.H. Lu, T.S. Zhou, G. Chen, S.C. Zhang, Int. J. Bif. Chaos 12, 855 (2002a)CrossRefGoogle Scholar
  16. 16.
    Martínez-Guerra, Rafael, G. C. Gómez-Cortés, and C. A. Pérez-Pinacho, Synchronization of Integral and Fractional Order Chaotic Systems, Springer, (2015).CrossRefGoogle Scholar
  17. 17.
    R. Martínez-Guerra, D.M.G. Corona-Fortunio, J.L. Mata-Machuca, Appl. Math. Comput. 219, 10934 (2013)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rafael Martínez-Guerra
    • 1
    Email author
  • Claudia Alejandra Pérez-Pinacho
    • 1
  1. 1.Automatic ControlCINVESTAV-IPNMexico CityMexico

Personalised recommendations