• Rafael Martínez-GuerraEmail author
  • Claudia Alejandra Pérez-Pinacho
Part of the Understanding Complex Systems book series (UCS)


The origin of the fractional calculus dates back to the late seventeenth century, almost on par with the development of differential and integral calculus, when Isaac Newton and Gottfried Leibniz founded the concept of ordinary derivative.


  1. 1.
    Bertram Ross, “The development of fractional calculus 1695-1900”, Historia Mathematica vol. 4, pp. 75–89, 1977.Google Scholar
  2. 2.
    Letter from Hanover, Germany to G.F.A. L’Hospital, September 30, 1695 Mathematische Schriften 1849, 2, Olms Verlag, Hildesheim, Germany (1695), pp. 301–302 reprinted 1962.Google Scholar
  3. 3.
    Keith B. Oldhamm, and Jerome Spainer, “The Fractional Calculus: Theory and applications of Differentiation and Integration to Arbitary Order”, Dover, 1974.Google Scholar
  4. 4.
    Pierre Simon de Laplace, “Théorie analytique des probabilités”, Vol. 7. Courcier, 1820.Google Scholar
  5. 5.
    Silvestre Francois Lacroix, “Traité du calcul differentiel et du calcul intégral”, Vol. 1. JBM Duprat, 1797.Google Scholar
  6. 6.
    N.H Abel, “Solutions de quelques problèmes à l’aide d’intégrales définies” . Oeuvres complètes, Vol. 1: pp. 11–18, 1823.Google Scholar
  7. 7.
    J. Liouville, “Mémoire sur le Calcul des différentielles à indices quelconques”, J Ecole Polytech, Vol 13, Section 21 pp. 71–162, 1832.Google Scholar
  8. 8.
    William Center, “On the Value of \((d/dx)^\theta x^0\) When \(\theta \) is a Positive Proper Fraction”, Cambridge & Dublin Math. Journal 3, pp. 163–169, 1848.Google Scholar
  9. 9.
    Bernhard Riemman, “Versuch einer allgemeinen Auffassung der Integration und Differentiation”, Gesammelte Werke 62, 1876.Google Scholar
  10. 10.
    L. Euler, “De progressionibus Transcentibus, sev Quarum Termini Algebraice Dari Nequeunt”, Comment. Acad. Sci. Imperialis Petropolitance Vol 5, pp. 38–57, 1738.Google Scholar
  11. 11.
    Joseph Louis Lagrange, “Sur une nouvelle espèce de calcul rélatif à la différentiation et à l’intégration des quantités variables”, Académie royale des sciences et belles lettres, 1772.Google Scholar
  12. 12.
    Fourier, Joseph, “Theorié analytique de la chaleur, par M. Fourier”, Chez Firmin Didot, père et fils, 1822.Google Scholar
  13. 13.
    Nishimoto Katsuyuki, “An Essence of Nishimoto’s Fractional Calculus (Calculus in the 21st Century): Integrations and Differentiations of Arbitrary Order”, Descartes Press Company, 1991.Google Scholar
  14. 14.
    Bonilla, B., Kilbas, A. A., and Trujillo, J. J., “Cálculo Fraccionario y Ecuaciones Diferenciales Fraccionarias”, Uned, Madrid, 2003.Google Scholar
  15. 15.
    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex, Springer, 2009.Google Scholar
  16. 16.
    E. Mosekilde, Y. Maistrenko, D. Postnov, Chaotic synchronization application to living systems, World Scientific Publishing, 2002.Google Scholar
  17. 17.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, 2001.Google Scholar
  18. 18.
    Ljupco Kocarev (Ed.), Consensus and synchronization in complex networks, Springer, 2013.Google Scholar
  19. 19.
    R Martínez-Guerra, C. D. Cruz-Ancona, C. A. Pérez-Pinacho, Generalized multi-synchronization viewed as a multi-agent leader-following consensus problem, Applied Mathematics and Computation 282 (2016) 226–236.MathSciNetCrossRefGoogle Scholar
  20. 20.
    C. D. Cruz-Ancona, R. Martínez-Guerra, C. A. Pérez-Pinacho, Generalized multi-synchronization: A leader-following consensus problem of multi-agent system, Neurocomputing, Vol. 233, pp. 52–60, 2017.CrossRefGoogle Scholar
  21. 21.
    Rafael Martínez-Guerra, and Christopher Diego Cruz-Ancona. Algorithms of Estimation for Nonlinear Systems, Springer International Publishing AG, 2017.Google Scholar
  22. 22.
    Nijmeijer, Henk, and Iven MY Mareels, “An observer looks at synchronization”, IEEE Transactions on Circuits and Systems I: Fundamental theory and applications vol. 44. no. 10, pp. 882–890,(1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Christiaan Huygens, La lettre á R.F. de Sluse, 24 février 1665. In: Oeuvres complètes. Tome V. Correspondance 1664–1665 (ed. D. Bierens de Haan). Martinus Nijhoff, Den Haag, pp 241, 1893.Google Scholar
  24. 24.
    Edward N. Lorenz, Section of planetary sciences: The predictability of hydrodynamic flow. Transactions of the New York Academy of Science, 25(4 Series II), 409–432, 1963.CrossRefGoogle Scholar
  25. 25.
    Strogatz, Steven H. “Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering". Westview press, 2014.Google Scholar
  26. 26.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1993.Google Scholar
  27. 27.
    L. M. Pecora, T. L. Carroll, Synchronization in Chaotic Systems, Physical Review Letters 64(8) (1990) 821–824.ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V. S. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments, Springer, 2007.Google Scholar
  29. 29.
    R. Engbert, F. R. Drepper, Chance and chaos in population biology models of recurrent epidemics and food chain dynamics, Chaos, Solitons & Fractals 4 (1994) 1147–1169.ADSCrossRefGoogle Scholar
  30. 30.
    G. Kaddoum, M. Coulon, D. Roviras, P. Chargé, Theoretical performance for asynchronous multi-user chaos-based communication systems on fading channels, Signal Processing 90(11) (2010) 2923–2933.CrossRefGoogle Scholar
  31. 31.
    R. Martínez-Guerra, J. J. Montesinos García, S. M. Delfín-Prieto, Secure Communications via Synchronization of Liouvillian Chaotic Systems, Journal of the Franklin Institute 353 (2016) 4384–4399.MathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Banerjee (ed.), Applications of Nonlinear Dynamics and Chaos in Science and Engineering, Vol. II (Springer, 2012)Google Scholar
  33. 33.
    L.E. Keshet, Mathematical Models in Biology (Random House, New York, 1988)zbMATHGoogle Scholar
  34. 34.
    César Cruz and Henk Nijmeijer. Synchronization through filtering. International Journal of Bifurcation and Chaos, 10(04): 763–775, 2000.ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Rafael Martínez-Guerra, and Wen Yu, Chaotic synchronization and secure communication via sliding-mode observer, International Journal of Bifurcation and Chaos 18(01): 235–243 (2008).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Sira-Ramirez and César Cruz-Hernández. Synchronization of chaotic systems: a generalized hamiltonian systems approach. International Journal of Bifurcation and Chaos, 11(05):1381–1395, 2001.ADSCrossRefGoogle Scholar
  37. 37.
    Alexander L Fradkov and A Yu Markov. Adaptive synchronization of chaotic systems based on speed gradient method and passification Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 44(10):905–912, 1997.Google Scholar
  38. 38.
    Ljupco Kocarev, Alain Shang, and Leon O Chua. Transitions in dynamical regimes by driving: a unified method of control and synchronization of chaos. International Journal of Bifurcation and Chaos, 3(02): 479–483, 1993.Google Scholar
  39. 39.
    Chai Wah We and Leon o Chua. A simple way to synchronize chaotic systems with application to secure communication systems. International Journal of Bifurcation and Chaos, 3(06):1619–1627Google Scholar
  40. 40.
    Zhang Hua-Guand, Ma Tie-Dong, Yu Wen, and Fu Jie. A practical approach to robust impulsive lag synchronization between different chaotic systems. Chinese Physics B, 17(10):3616, 2008.ADSCrossRefGoogle Scholar
  41. 41.
    Zhang Hua-Guang, Zhao Yan, Yu Wen, and Yang Dong-Sheng. A unified approach to fuzzy modelling and robust synchronization of different hyperchaotic systems. Chinese Physics B, 17(11):4056, 2008.ADSCrossRefGoogle Scholar
  42. 42.
    M. Baumann, R. I. Leine, Synchronization-based state observer for impacting multibody systems using switched geometric unilateral constraints, Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, June 29–July 2 2015, Barcelona, Catalonia, Spain, p. 585–596.Google Scholar
  43. 43.
    S. Poinsard, A. Lor, Robust Communication-Masking via a Synchronized Chaotic Lorenz Transmission System, in J.A. Tenreiro-Machado, Albert C.J. Luo, R. S. Barbosa, M. F. Silva, L. B. Figueiredo (Eds.), Nonlinear Science and Complexity, Springer, 2011, p. 357–365.CrossRefGoogle Scholar
  44. 44.
    P. Canyelles-Pericas, K. Busawon, High gain observer with algorithm transformation to extended Jordan observable form for chaos synchronization applications, Proceedings of the 2014 UKACC International Conference on Control, 9th–11th July 2014, Loughborough, U.K., p. 262–267.Google Scholar
  45. 45.
    H. Dimassi, A. Loria, S. Belghith, Adaptive observers-based synchronization of a class of Lur’e systems with delayed outputs for chaotic communications, Proceedings of the 2012 IFAC Conference on Analysis and Control of Chaotic Systems, June 20–22 2012, Cancún, México, p. 255–260.Google Scholar
  46. 46.
    E. Solak, A reduced-order observer for the synchronization of Lorenz systems, Physics Letters A 325 (2004) 276–278.ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Rafael Martínez-Guerra, G. C. Gómez-Cortés, and C. A. Pérez-Pinacho. Synchronization of integral and fractional order chaotic systems. Springer, 2015.Google Scholar
  48. 48.
    R. Martínez-Guerra, A. Luviano-Juárez, J. J. Rincón-Pasaye, On nonlinear observers: A differential algebraic approach, Proceedings of the 2007 American Control Conference, July 11–13 2007, New York City, USA, p. 1682–1686.Google Scholar
  49. 49.
    Alexander Fradkov, Henk Nijmeijer and Alexey Markov. Adaptive Observer.based synchronization for communication. International Jorunal of Bifurcation and Chaos, 10(12):2807–2813, 2000.Google Scholar
  50. 50.
    A Yu Pogromsky. Passivity based design of synchronizing systems. International Journal of Bifurcation and Chaos, 8(02):295–319, 1998.Google Scholar
  51. 51.
    Alexander Pogromsky, Giovanni Santoboni, and Henk Nijmeijer. Partial synchronization: from symmetry towards stability. Physica D: Nonlinear Phenomena, 172(1): 65–87, 2002.ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Ahmet Ucar, Karl E Lonngren, and Er-Wei Bai. synchronization of the unified chaotic systems via active control. Chaos, solitons & Fractals, 27(5):1292–1297, 2006.ADSCrossRefGoogle Scholar
  53. 53.
    UE Vicent. Synchronization of rikitake chaotic attractor using active control. Physics Letters A, 343(1):133–138, 2005ADSCrossRefGoogle Scholar
  54. 54.
    Shihua Chen and Jinhu Lü. Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, Solitons & Fractals, 14(4):643–647, 2002.ADSCrossRefGoogle Scholar
  55. 55.
    Moez Feki. An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons & Fractals, 18(1): 141–148, 2003.ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Chih-Min Lin, Ya-Fu Peng, and Ming-Hung Lin, Cmac-based adaptive backstepping synchronization of uncertain chaotic systems. Chaos, solitions & and fractals, 42(2):981–988, 2009.Google Scholar
  57. 57.
    Yongguang Yu and Suochun Zhang. Adaptive backstepping synchronization of uncertain chaotic system. Chaos, Solitons & Fractals, 21(3):643–649, 2004.ADSCrossRefGoogle Scholar
  58. 58.
    Jian Zhang, Chunguang Li, Hongbin Zhang and Juebang Yu. Chaos Syncrhonization using single variable feedback based on backstepping method. chaos, Solitons & Fractals, 21(5):1183–1193, 2004.Google Scholar
  59. 59.
    Her-Terng Yau. Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons & Fractals, 22(2):347, 2004.Google Scholar
  60. 60.
    Hao Zhang, Xi-Kui Ma, and Wei-Zeng Liu. Synchronization of Chaotic systems with parametric uncertainty using active sliding mode control Chaos, Solitons & Fractals, 21(5): 1249–1257, 2004.ADSCrossRefGoogle Scholar
  61. 61.
    B.R. Hunt, E. Ott, J.A. Yorke, “Diferentiable generalized synchronization of chaos", Phys Rev E; 55:4029, 1997.Google Scholar
  62. 62.
    Mohammad Saleh Tavazoei, Mohammad Haeri, “A necessary condition for double scroll attractor existence in fractional-order systems", Physics Letters A 367, pp. 102–113, 2007.Google Scholar
  63. 63.
    Mohammad Saleh Tavazoei, Mohammad Haeri, “Chaotic attractors in incommensurate fractional order systems", Physica D 237 , pp. 2628–2637, 2008.Google Scholar
  64. 64.
    Wu, X., Li, J., Chen, G., Chaos in the fractional order unified system and its synchronization. Journal of the Franklin Institute, 2008; 345(4): 392–401.CrossRefGoogle Scholar
  65. 65.
    Wang, X.Y., & He, Y. Projective synchronization of fractional order chaotic system based on linear separation. Physics Letters A, 2008; 372(4): 435–441.ADSCrossRefGoogle Scholar
  66. 66.
    Wang, X. Y., & Wang, M. J. Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2007; 17(3): 033106.zbMATHGoogle Scholar
  67. 67.
    Wang, X. Y., & Song, J. M. Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Communications in Nonlinear Science and Numerical Simulation, 2009; 14(8): 3351–3357.ADSCrossRefGoogle Scholar
  68. 68.
    Odibat, Z. M., Corson, N., Aziz-Alaoui, M. A., & Bertelle, C., Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 2010, 20(1):81–97.ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    M.S. Tavazoei, M. Haeri, Synchronization of chaotic fractional-order systems via active sliding mode controller, Physica A: Statistical Mechanics and its Applications. 2008; 387(1): 57–70.Google Scholar
  70. 70.
    A. Razminia, D. Baleanu, Complete synchronization of commensurate fractional order chaotic systems using sliding mode control, Mechatronics. 2013; 23(7): 873–879.CrossRefGoogle Scholar
  71. 71.
    Wang, X. Y., Zhang, X., & Ma, C. Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dynamics, 2012; 69(1): 511–517.MathSciNetCrossRefGoogle Scholar
  72. 72.
    N. Aguila-Camacho, M. A. Duarte-Mermoud, & E. Delgado-Aguilera, Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters. Chaos, Solitons & Fractals, 2016; 87: 1–11.ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Behinfaraz, R., & Badamchizadeh, M. Optimal synchronization of two different in commensurate fractional-order chaotic systems with fractional cost function. Complexity, 2016, 21(S1): 401–416.ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    Deng, W., Generalized synchronization in fractional order systems, Physical review E. 2007; 75(5): 056201.ADSCrossRefGoogle Scholar
  75. 75.
    R. Martínez-Guerra, & J. L. Mata-Machuca, Fractional generalized synchronization in a class of nonlinear fractional order systems, Nonlinear Dynamics. 2014; 77(4): 1237–1244.MathSciNetCrossRefGoogle Scholar
  76. 76.
    Henry D. I. Abarbanel, Nikolai F. Rulkov, Mikhail M Sushchik, Generalized synchronization of chaos: The auxiliary system approach, Phys. Rev. E. , 52(1): 214–217, 1995.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rafael Martínez-Guerra
    • 1
    Email author
  • Claudia Alejandra Pérez-Pinacho
    • 1
  1. 1.Automatic ControlCINVESTAV-IPNMexico CityMexico

Personalised recommendations