Skip to main content

Microgeometry of Composites and Their Piezoelectric Coefficients \(\varvec{g_{ij}^{*} }\)

  • Chapter
  • First Online:
  • 636 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 271))

Abstract

Piezoelectric coefficients gij represent a link between an external mechanical stress applied to a sample and an electric field formed by polarisation charges of the sample as a result of the direct piezoelectric effect. The piezoelectric coefficients gij also characterise a link between a strain and electric displacement at the converse piezoelectric effect. The piezoelectric sensitivity associated with gij is of importance for sensor, energy-harvesting, acoustic, and hydroacoustic applications, for piezo-ignition systems, etc. Examples of the effective piezoelectric coefficients \(g_{ij}^{*}\), max\(g_{33}^{*}\) and their links to the piezoelectric coefficients \(d_{ij}^{*}\) are discussed for piezo-active composites with various connectivity patterns (2–2-type, 1–3-type, 1–1-type, 0–3-type, and 3–β composites). The important role of the microgeometric factor and polymer component at achieving the large values of \(g_{ij}^{*}\) of the composite is shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zheludev IS (1971) Physics of crystalline dielectrics. Vol 2: Electrical properties.  Plenum, New York

    Chapter  Google Scholar 

  2. Steinem C, Janshoff A (eds) (2007) Piezoelectric sensors. Springer, Berlin

    Google Scholar 

  3. Sherman CH, Butler JL (2007) Transducers and arrays for underwater sound. Springer, New York

    Book  Google Scholar 

  4. Fraden J (2010) Handbook of modern sensors. Physics, designs, and applications. Springer, New York

    Book  Google Scholar 

  5. Sharapov V (2011) Piezoceramic sensors. Springer, Heidelberg

    Book  Google Scholar 

  6. Lupeiko TG, Lopatin SS (2004) Old and new problems in piezoelectric materials research and materials with high hydrostatic sensitivity. Inorg Mater 40 (Suppl. 1):S19–S32

    Article  CAS  Google Scholar 

  7. Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London

    Google Scholar 

  8. Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, Berlin

    Book  Google Scholar 

  9. Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775

    Article  Google Scholar 

  10. Zhang S, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111:031301

    Article  CAS  Google Scholar 

  11. Topolov VYu, Krivoruchko AV, Bowen CR (2012) Anisotropy of electromechanical properties and hydrostatic response of advanced 2–2-type composites. Physica Status Solidi A 209:1334–1342

    Article  CAS  Google Scholar 

  12. Topolov VYu, Glushanin SV (2009) Features of the hydrostatic piezoelectric response of a novel 2–2–0 composite based on single-domain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 crystal. Compos Sci Technol 69:2532–2537

    Article  CAS  Google Scholar 

  13. Topolov VYu, Bowen CR, Ermakov IA (2016) Remarkable hydrostatic piezoelectric response of novel 2–0–2 composites. Ferroelectr Lett Sect 43:90–95

    Article  CAS  Google Scholar 

  14. Grekov AA, Kramarov SO, Kuprienko AA (1987) Anomalous behavior of the two-phase lamellar piezoelectric texture. Ferroelectrics 76:43–48

    Article  CAS  Google Scholar 

  15. Adachi M, Shiosaki T, Kobayashi H, Ohnishi O, Kawabata A (1985) Temperature compensated piezoelectric lithium tetraborate crystal for high frequency surface acoustic wave and bulk wave device applications. In: Proceedings of 1985 IEEE Ultrasonics Symposium, IEEE, New York, pp 228–232

    Google Scholar 

  16. Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066

    Article  CAS  Google Scholar 

  17. Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and related phenomena. Piezoelectricity, vol 4. Gordon and Breach Science Publishers, New York, pp 167–176

    Google Scholar 

  18. Gusakova LG, Poguibko VM, Spiridonov NA, Ishchuk VM, Kisel NK (2012) Lead-free nanostructured piezoceramic material based on (K, Na)NbO3. Nanosyst Nanomater Nanotechnol 10:303–312 (in Russian)

    Google Scholar 

  19. Yan Y, Zhou JE, Maurya D, Wang YU, Priya S (2016) Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat Commun 7:13089

    Article  CAS  Google Scholar 

  20. Topolov VYu, Krivoruchko AV (2009) Polarization orientation effect and combination of electromechanical properties in advanced 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal/polymer composites with 2–2 connectivity. Smart Mater Struct 18:065011

    Google Scholar 

  21. Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61

    Article  Google Scholar 

  22. Chan HLW, Unsworth J (1989) Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 36:434–441

    Article  CAS  Google Scholar 

  23. Gibiansky LV, Torquato S (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J Mech Phys Solids 45:689–708

    Article  Google Scholar 

  24. Bezus SV, Topolov VYu, Bowen CR (2006) High-performance 1–3-type composites based on (1 − x) Pb(A1/3Nb2/3)O3xPbTiO3 single crystals (A = Mg, Zn). J Phys D Appl Phys 39:1919–1925

    Article  CAS  Google Scholar 

  25. Wang F, He C, Tang Y (2007) Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277

    Article  CAS  Google Scholar 

  26. Topolov VYu, Krivoruchko AV, Bisegna P, Bowen CR (2008) Orientation effects in 1–3 composites based on 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 single crystals. Ferroelectrics 376:140–152

    Article  CAS  Google Scholar 

  27. Topolov VYu, Bisegna P (2010) Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J Electroceram 25:26–37

    Article  CAS  Google Scholar 

  28. Topolov VYu, Bowen CR, Bisegna P, Krivoruchko AV (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195

    Article  CAS  Google Scholar 

  29. Bowen CR, Topolov VYu, Isaeva AN, Bisegna P (2016) Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. CrystEngComm 18:5986–6001

    Article  CAS  Google Scholar 

  30. Topolov VYu, Bowen CR, Bisegna P (2015) New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens Actuators A – Phys 229:94–103

    Article  CAS  Google Scholar 

  31. Topolov VYu, Bowen CR, Bisegna P, Panich AE (2015) Effect of the matrix subsystem on hydrostatic parameters of a novel 1–3-type piezo-composite. Funct Mater Lett 8:1550049

    Article  CAS  Google Scholar 

  32. Topolov VYu, Krivoruchko AV, Bisegna P (2011) Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 crystal. Compos Sci Technol 71:1082–1088

    Article  CAS  Google Scholar 

  33. Glushanin SV, Topolov VYu (2001) Features of electromechanical properties of piezoelectric composites with elements of connectivity 1–1. J Phys D Appl Phys 34:2518–2529

    Article  CAS  Google Scholar 

  34. Glushanin SV, Topolov VYu (2001) Anisotropy of the electromechanical properties and a high piezoelectric sensitivity of the 1–1 type ferroelectric piezocomposites. Tech Phys Lett 27:626–628

    Article  CAS  Google Scholar 

  35. Chan HLW, Ng PKL, Choy CL (1999) Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites. Appl Phys Lett 74:3029–3031

    Article  CAS  Google Scholar 

  36. Ng KL, Chan HLW, Choy CL (2000) Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE Trans Ultrason Ferroelectr Freq Control 47:1308–1315

    Article  CAS  Google Scholar 

  37. Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) Piezoelectric properties of ferroelectric PZT–polymer composites. J Phys D Appl Phys 34:487–492

    Article  CAS  Google Scholar 

  38. Chiang CK, Popielarz R (2002) Polymer composites with high dielectric constant. Ferroelectrics 275:1–9

    Article  CAS  Google Scholar 

  39. Wilson SA, Maistros GM, Whatmore RW (2005) Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J Phys D Appl Phys 38:175–182

    Article  CAS  Google Scholar 

  40. Glushanin SV, Topolov VYu, Krivoruchko AV (2006) Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater Chem Phys 97:357–364

    Article  CAS  Google Scholar 

  41. Topolov VYu, Turik AV, Chernobabov AI (1994) On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr Rep 39:805–809

    Google Scholar 

  42. Topolov VYu, Turik AV, Chernobabov AI (1994) On the piezoelectric anisotropy in modified PbTiO3 ceramics. Ferroelectrics 154:271–276

    Article  Google Scholar 

  43. Ngoma JB, Cavaille JY, Paletto J, Perez J (1990) Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109:205–210

    Article  CAS  Google Scholar 

  44. Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson M (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, New York, pp 92–128

    Google Scholar 

  45. Lushcheykin GA (1987) Polymer and composition piezoelectrics. Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 51:2273–2276 (in Russian)

    Google Scholar 

  46. Pardo L, Mendiola J, Alemany C (1988) Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J Appl Phys 64:5092–5097

    Article  CAS  Google Scholar 

  47. Babu I, van den Ende DA, de With G (2010) Processing and characterization of piezoelectric 0–3 PZT/LCT/PA composites. J Phys D Appl Phys 43:425402

    Article  CAS  Google Scholar 

  48. Huo X, Zhang R, Zheng L, Zhang S, Wang R, Wang J, Sang S, Yang B, Cao W (2015) (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties. J Am Ceram Soc 98:1829–1835

    Article  CAS  Google Scholar 

  49. Kar-Gupta R, Venkatesh TA (2007) Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater 55:1093–1108

    Article  CAS  Google Scholar 

  50. Sessler GM (1981) Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 70:1596–1608

    Article  CAS  Google Scholar 

  51. Topolov VYu, Bisegna P, Glushanin SV, Panich AA (2011) Interrelations between microstructure and piezoelectric sensitivity in novel 0–3–0 composites based on 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal. Ferroelectrics 413:11–28

    Article  CAS  Google Scholar 

  52. Topolov VYu, Bisegna P, Bowen CR (2011) Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413:176–191

    Article  CAS  Google Scholar 

  53. Cheng X, Huang S, Chang J, Lu L, Liu F, Ye Z, Wang S (2005) Dielectric and piezoelectric properties of piezoelectric ceramic–sulphoaluminate cement composites. Smart Mater Struct 14:N59–N63

    Article  CAS  Google Scholar 

  54. Smay JE, Tuttle B, Cesarano J III (2008) Robocasting of three-dimensional piezoelectric structures. In: Safari A, Akdoğan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer, New York, pp 305–318

    Chapter  Google Scholar 

  55. Smay JE, Cesarano J III, Tuttle BA, Lewis JA (2002) Piezoelectric properties of 3–X periodic Pb(ZrxTi1–x)O3–polymer composites. J Appl Phys 92:6119–6127

    Article  CAS  Google Scholar 

  56. Filippov SE, Vorontsov AA, Topolov VYu, Brill OE, Bisegna P, Panich AE (2014) Features of the piezoelectric effect in a novel PZT-type ceramic/clay composite. Ferroelectr Lett Sect 41:82–88

    Article  CAS  Google Scholar 

  57. Mendiola J, Jimenez B (1984) Review of recent work on piezoelectric composite systems. Ferroelectrics 53:159–166

    Article  CAS  Google Scholar 

  58. Bowen CR, Topolov VYu, Kim HA (2016) Modern piezoelectric energy-harvesting materials. Springer International Publishing, Switzerland

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Yu. Topolov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Topolov, V.Y., Bowen, C.R., Bisegna, P. (2018). Microgeometry of Composites and Their Piezoelectric Coefficients \(\varvec{g_{ij}^{*} }\). In: Piezo-Active Composites. Springer Series in Materials Science, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-319-93928-5_3

Download citation

Publish with us

Policies and ethics