Skip to main content

Gettering and Passivation of Metals in Silicon and Germanium

  • Chapter
  • First Online:
Metal Impurities in Silicon- and Germanium-Based Technologies

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 270))

Abstract

The aim of this chapter is surely not to review all the different gettering approaches that have been reported in the literature, but rather to give a type of synopsis and to focus on the understanding and the new insights that have been obtained since the beginning of the century. First some general aspects about gettering strategies are discussed, giving a schematic overview of different gettering approaches, before outlining the main gettering mechanisms. At the same time the nomenclature used in the gettering world is explained. Of key importance is the difference between segregation gettering and relaxation gettering. Subsequently the different backside gettering techniques are reviewed, including backside damage, thin layer depositions and ion implantation. New insights related to the phosphorus diffusion gettering will be outlined. Intrinsic gettering in Cz-Si substrates based on oxygen precipitates will be discussed next. For state-of-the-art low-thermal-budget CMOS front-side gettering techniques gain more and more momentum, as will be described in a next section. The two following paragraphs are dealing with gettering in Silicon-on-Insulator technologies and photovoltaics, respectively. The last paragraph gives some reflections on ab initio calculations and continuum modeling for gettering, a topic that is discussed in more detail in Chap. 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kikuchi, S. Iizima, A simpler method for removing coppr from germanium. J. Phys. Soc. Jpn. 12, 824 (1957). https://10.1143/JPSJ.12.824

    Article  CAS  Google Scholar 

  2. C.F. Drake, K.L. Ellington, Cause and prevention of high reverse currents in large-area high-voltage diffused-silicon rectifiers. Electr. Commun. 38, 341–353 (1963)

    Google Scholar 

  3. C.F. Cerofolini, M.L. Polignano, A comparison of gettering techniques for very large scale integration. J. Appl. Phys. 55, 579–876 (1983). https://doi.org/10.1063/1.333066

    Article  Google Scholar 

  4. M.L. Polignano, C.F. Cerofolini, H. Bender, C. Claeys, Gettering mechanisms in silicon. J. Appl. Phys. 64, 869–876 (1988). https://doi.org/10.1063/1.341939

    Article  CAS  Google Scholar 

  5. S.A. McHugo, H. Hieslmair, Gettering in silicon, in Encyclopedia of Electrical and Electronics Engineering (Wiley, New York, 1999). https://doi.org/10.1002/047134608x.w3209

  6. M.B. Shabani, T. Yamashita, E. Morita, Study of gettering mechanisms in silicon: Competitive gettering between phosphorus diffusion gettering and other gettering sites. Solid State Phenom. 131–133, 399–404 (2008). https://doi.org/10.4028/www.scientific.net/SSP.131-133.399

    Article  Google Scholar 

  7. M. Seibt, V. Kveder, Gettering processes and the role of extended defects, in Advanced Silicon Materials for Photovoltaic Applications (Chap. 4, Wiley, New York, 2012). https://doi.org/10.1002/9781118312193.ch4

  8. A.M. Myers, M. Seibt, W. Schröter, Mechanisms of transition-metal gettering in silicon. J. Appl. Phys. 88, 3795–3819 (2000). https://doi.org/10.1063/1.128927

    Article  CAS  Google Scholar 

  9. S. Koveshnikov, O. Kononchuk, K. Beaman, G.A. Rozgonyi, F. Gonzalez, Gettering of Fe, Cu and Ni in MeV implanted epitaxial silicon. Electrochem. Soc. Proc. 98(13), 339–352 (1998)

    Google Scholar 

  10. A.L. Smith, K. Wada, L.C. Kimerling, Modeling of transition metal redistribution to enable wafer design for gettering. J. Electochem. Soc. 147, 1154–1160 (2000). https://doi.org/10.1149/1.139332

    Article  CAS  Google Scholar 

  11. R. Hoelzl, D. Huber, K.J. Range, L. Fabry, J. Hage, R. Wahlich, Gettering of copper and nickel in p/p+ epitaxial wafers. J. Electrochem. Soc. 147, 2704–2710 (2000). https://doi.org/10.1149/1.1393593

  12. R. Hoelzl, K.J. Range, L. Fabry, Modeling of Cu gettering in p- an n-type silicon and in poly-silicon. Appl. Phys. A 73, 137–142 (2002). https://doi.org/10.1007/s003390100846

    Article  Google Scholar 

  13. K. Nakamura, H. Iga, J. Tomioka, Analysis of the segregation phenomena of copper in p/p+ epitaxial silicon wafers. ECS Trans. 3(4), 255–265 (2006). https://doi.org/10.1149/1.2355761

    Article  CAS  Google Scholar 

  14. K. Torigoe, T. Ono, K. Nakamura, Competitive interaction between segregation gettering and surface precipitation of nickel in p/p+ silicon epitaxial wafers. ECS J. Solid State Sci. Technol. 4, Q110–Q114 (2015). https://doi.org/10.1149/2.0201509js

    Article  CAS  Google Scholar 

  15. R. Hoelzl, L. Fabry, K.J. Range, The linkage between macroscopic gettering mechanisms and electronic configuration of 3d-elements in p/p silicon epitaxial wafers. Appl. Phys. A 74, 35–39 (2002). https://doi.org/10.1007/s003390100866

    Article  Google Scholar 

  16. R. Hoelzl, L. Fabry, K.J. Range, Ni reactions with surfaces: dependence of gettering efficiencies for Ni on crystal-growth conditions, backside gettering techniques, oxygen precipitates and thermal treatments. Appl. Phys. A 74, 711–718 (2002). https://doi.org/10.1007/s003390100946

    Article  CAS  Google Scholar 

  17. K. Sumino, Basic aspects of impurity gettering. Microelectron. Eng. 66, 268–280 (2003). https://doi.org/10.1016/S0167-9317(02)00918-8

    Article  CAS  Google Scholar 

  18. E.J. Mets, Poisoning and gettering effects in silicon junctions. J. Electrochem. Soc. 112, 420–425 (1965). https://doi.org/10.1149/1.2423560

    Article  CAS  Google Scholar 

  19. G.H. Schwuttke, K. Yang, H. Kappert, Lifetime control in silicon by impact sound stressing. Phys. Status Solidi A 42, 553–564 (1977). https://doi.org/10.1002/pssa.2210420218

    Article  CAS  Google Scholar 

  20. C.W. Pearce, V.J. Zaleckas, A new approach to lattice damage gettering. J. Electrochem. Soc. 126, 1436–1437 (1979). https://doi.org/10.1149/1.2129298

    Article  CAS  Google Scholar 

  21. K.H. Yang, G.H. Schwuttke, Minority carrier lifetime improvement in silicon through laser damage gettering. Phys. Status Solidi A 58, 127–134 (1980). https://doi.org/10.1002/pssa.2210580115

    Article  CAS  Google Scholar 

  22. T.M. Buck, K.A. Pickar, J.M. Poate, C.M. Shieh, Gettering rates for various fast-diffusing impurities at ion-damaged layers on silicon. Appl. Phys. Lett. 21, 485–487 (1972). https://doi.org/10.1063/1.1654228

    Article  CAS  Google Scholar 

  23. A.G. Cullis, T.E. Seidel, R.L. Meek, Comparative study of annealed neon- argon-, and krypton-ion implantation damage in silicon. J. Appl. Phys. 49, 5188–5198 (1978). https://doi.org/10.1063/1.324414

    Article  CAS  Google Scholar 

  24. A. Goetzberger, W. Shockley, Metal precipitates in silicon p-n junctions. J. Appl. Phys. 31, 1821–1824 (1960). https://doi.org/10.1063/1.1735455

    Article  CAS  Google Scholar 

  25. S.W. Ing, R.E. Morrisson, L.L. Alt, R.W. Aldrich, Gettering of metallic impurities from planar silicon diodes. J. Electrochem. Soc. 110, 533–537 (1963). https://doi.org/10.1149/1.2425808

    Article  CAS  Google Scholar 

  26. W. Schröter, A. Döller, A. Zozime, V. Kveder, M. Seibt, E. Spiecker, Phosphorus diffusion gettering of metallic impurities in silicon: mechanisms beyond segregation. Solid-State Phenom. 95, 527–538 (2004). http://www.scientific.net/SSP.95-96.527

  27. A. Armigliato, D. Nobili, M. Servidori, S. Solmi, SiP precipitation within the doped silicon lattice, concomitant with phosphorus predeposition. J. Appl. Phys. 47, 5489–5491 (1976). https://doi.org/10.1063/1.322549

    Article  CAS  Google Scholar 

  28. R. Chen, B. Trzynadlowski, S.C. Dunham, Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si. J. Appl. Phys. 115, 054906/1–6 (2014). https://doi.org/10.1063/1.4864377

  29. G.B. Bronner, J.D. Plummer, Gettering of gold in silicon: a tool for understanding the properties of silicon interstitials. J. Appl. Phys. 61, 5286 (1987). https://doi.org/10.1063/1.338264

  30. S. Nadahara, H. Tsunoda, M. Shiozaki, M. Watanabe, K. Yamabe, Low temperature phosphorus diffusion gettering of iron in silicon. Electrochem. Soc. Proc. 91(9), 667–674 (1991)

    Google Scholar 

  31. M.L. Joshi, S. Dash, Distribution and precipitation of gold in phosphorus-diffused silicon. J. Appl. Phys. 37, 2453–2457 (1966). https://doi.org/10.1063/1.1708836

    Article  CAS  Google Scholar 

  32. L. Baldi, G.F. Cerofolini, G. Ferla, G. Frigerio, Gold solubility in silicon and gettering by phosphorus. Phys. Status Solidi A 48, 523–532 (1978). https://doi.org/10.1002/pssa.2210480232

    Article  CAS  Google Scholar 

  33. S.P. Phang, D. Macdonald, Direct comparison of boron, phosphorus, and aluminum gettering of iron in crystalline silicon. J. Appl. Phys. 109, 073521/1–6 (2011). https://doi.org/10.1063/1.3569890

  34. A. Haarahiltunen, H. Savin, M. Yli-Koski, H. Tavitie, J. Sinkkonen, Modeling phosphorus diffusion gettering of iron in single crystal silicon. J. Appl. Phys. 105, 023510/1–4 (2009). https://doi.org/10.1063/1.3068337

  35. R.L. Meek, T.E. Seidel, A.G. Cullis, Diffusion gettering of Au and Cu in silicon. J. Electrochem. Soc. 122, 786–796 (1975). https://doi.org/10.1149/1.2134324

    Article  CAS  Google Scholar 

  36. O. Paz, E. Heran, E. Fayo, POCl and boron gettering of LSI silicon devices: similarities and differences. J. Electrochem. Soc. 126, 1754–1761 (1979). https://doi.org/10.1149/1.2128791

    Article  CAS  Google Scholar 

  37. B. Hartiti, M. HageAli, J.C. Muller, P. Siffert, Rutherford backscattering analysis of phosphorus gettering of Au and Cu. Appl. Phys. Lett. 62, 3476–3478 (1993). https://doi.org/10.1063/1.109025

    Article  CAS  Google Scholar 

  38. J.E. Lawrence, Metallographic analysis of gettered silicon. Trans. Met. Soc. AIME 242, 484–489 (1968)

    CAS  Google Scholar 

  39. J.E. Lawrence, Diffusion-induced stress and lattice disorders in silicon. J. Electrochem. Soc. 113, 819–824 (1965). https://doi.org/10.1149/1.2424127

    Article  Google Scholar 

  40. G.A. Rozgonyi, P.M. Petroff, M.H. Read, Elimination of oxidation-induced stacking faults by pre-oxidation gettering of silicon wafers. J. Electrochem. Soc. 122, 1725–1729 (1975). https://doi.org/10.1149/1.2134118

    Article  CAS  Google Scholar 

  41. H. Talvitie, V. Vahanissi, A. Haarahiltunen, M. Yli-Koski, H. Savin, Phosphorus and boron diffusion gettering of iron in monocrystalline silicon. J. Appl. Phys. 109, 093505-1–093505-5 (2011). https://doi.org/10.1063/1.35820864

  42. R.D. Thompson, K.N. Tu, Low temperature gettering of Cu, Ag and Au across a Si wafer by Al. Appl. Phys. Lett. 41, 440–442 (1982). https://doi.org/10.1063/1.93565

    Article  CAS  Google Scholar 

  43. M. Apel, I. Hanke, R. Schindler, W. Schröter, Aluminum gettering in silicon. J. Appl. Phys. 76, 4432–4433 (1994). https://doi.org/10.1063/1.357339

    Article  CAS  Google Scholar 

  44. C.S. Chen, D.K. Schroder, Kinetics of gettering in silicon. J. Appl. Phys. 71, 5858–5864 (1992). https://doi.org/10.1063/1.350482

    Article  CAS  Google Scholar 

  45. H. Hieslmair, S.M. McHugo, E.R. Weber, Aluminum backside segregation, in Proceedings of Photovoltaic Specialists Conference(1996), pp. 441–444. https://doi.org/10.1109/pvsc.1996.564038

  46. M. Seibt, A. Sattler, C. Rudolf, O. Voss, V. Kveder, W. Schröter, Gettering in silicon photovoltaics: Current status and future perspectives. Phys. Status Solidi A 203, 696–713 (2004). https://doi.org/10.1002/pssa.200664516

    Article  CAS  Google Scholar 

  47. S. Martinuzzi, I. Perichaud, J.J. Simon, External gettering by aluminum-silicon alloying observed from carrier recombination at dislocations in float zone silicon wafers. Appl. Phys. Lett. 70, 2744–2746 (1997). https://doi.org/10.1063/1.119009

    Article  CAS  Google Scholar 

  48. A. Das, A. Rohatgi, Simultaneous iron getttering and passivation of p-type monocrystalline silicon using a negatively charged aluminum-doped dielectric. Appl. Phys. Lett. 101 252105/1–4 (2012). https://doi.org/10.1063/1.4771979

  49. G.A. Rozgonyi, R.A. Kushner, The elimination of oxidation-induced stacking faults by pre-oxidation gettering of silicon wafers III. Defect etch pit correlation with p-n junction leakage. J. Electrochem. Soc. 123, 570–576 (1976). https://doi.org/10.1149/1.2132879

    Article  CAS  Google Scholar 

  50. K. Tanno, F. Shimura, T. Kawamura, Microdefect elimination in reduced pressure epitaxy on silicon wafer by back damage-Si3N4 film technique. J. Electrochem. Soc. 128, 395–399 (1981). https://doi.org/10.1149/1.2127429

    Article  CAS  Google Scholar 

  51. A.Y. Liu, V.P. Markevich, A.R. Peaker, J.D. Murphy, D. Macdonald, Gettering of interstitial iron in silicon by plasma-enhanced chemical vapor deposited silicon nitride films. J. Appl. Phys. 120, 193103/1–10 (2016). https://doi.org/10.1063/1.4967914

  52. K. Mc Lean, C. Morrow, D. Macdonald Activation energy for the hydrogenation of iron in p-type crystalline silicon wafers, in Proceedings of IEEE 4th World Conference Photovoltaic Energy Conversion (2006), pp. 1122–1125. https://doi.org/10.1109/wcpec.2006.279358

  53. A.Y. Liu, D. Macdonald, Hydrogen passivation of interstitial iron in boron-doped multi-crystalline silicon during annealing. J. Appl. Phys. 116, 194902/1–10 (2014). https://doi.org/10.1063/1.4901831

  54. S. Ogushi, S. Sadamitsu, K. Marsden, Y. Koike, M. Sana, Gettering characteristics of heavy metal impurities in silicon wafers with polysilicon back seal and internal gettering. Jpn. J. Appl. Phys. 36, 6601–6606 (1997). https://doi.org/10.1143/JJAP.36.6601

    Article  CAS  Google Scholar 

  55. A.A. Istratov, W. Huber, E.R. Weber, Experimental evidence for the presence of segregation and relaxation gettering of iron in polycrystalline silicon layers on silicon. Appl. Phys. Lett. 85, 4472–4474 (2004). https://doi.org/10.1063/1.1819512

    Article  CAS  Google Scholar 

  56. A. Haarahiltunen, M. Yli-Koski, H. Talvitie, V. Vahanissi, J. Lindroos, H. Savin, Gettering of iron in CZ-silicon by polysilicon layer. Phys. Status Solidi C 8, 751–754 (2011). https://doi.org/10.1002/pssc.201000194

    Article  CAS  Google Scholar 

  57. R. Hoelzl, K.J. Range, L. Fabry, Comparison of different gettering techniques for Cu-p+ versus polysilicon and oxygen precipitates. Appl. Phys. A 75, 591–595 (2001). https://doi.org/10.1007/s003390101045

    Article  CAS  Google Scholar 

  58. W. Dyson, L. Hellwig, J. Moody, J. Rossi, Gettering of p+ (100) Si substrates for epitaxial growth. Electrochem. Soc. Proc. 83(9), 246–255 (1983)

    Google Scholar 

  59. C.C.D. Wong, S. Hahn, F.A. Ponce, Z.U. Rek, Backside gettering and its interactions with intrinsic gettering. Proc. Mat. Res. Soc. 71, 33–38 (1986)

    Article  CAS  Google Scholar 

  60. T.A. Baginski, J.R. Monkowski, Germanium backside gettering of gold in silicon. J. Electrochem. Soc. 133, 142–147 (1986). https://doi.org/10.1149/1.2108510

    Article  CAS  Google Scholar 

  61. J.R. Dennis, E.B. Hale, Amorphization of silicon by ion implantation: Homogeneous or heterogeneous nucleation? Rad. Effects 30, 219–225 (1976). https://doi.org/10.1080/00337577608240825

    Article  CAS  Google Scholar 

  62. F.F. Morehead, B.L. Crowder, R.S. Title, Formation of amorphous silicon by ion bombardment as a function of ion, temperature and dose. J. Appl. Phys. 43, 1112–1116 (1972). https://doi.org/10.1063/1.1661223

    Article  CAS  Google Scholar 

  63. P.D. Parry, Target heating during ion implantation. J. Vac. Sci. Technol. 13, 622–629 (1976). https://doi.org/10.1116/1.569046

    Article  CAS  Google Scholar 

  64. T.W. Sigmon, L. Csepregi, J.W. Mayer, Ion implantation gettering of gold. J. Electrochem. Soc. 123, 1116–1117 (1976). https://doi.org/10.1149/1.2133007

    Article  CAS  Google Scholar 

  65. C.M. Hsieh, J.R. Mathews, H.D. Seidel, K.A. Pickar, C.M. Drum, Ion-implantation-damage gettering effect in silicon photodiode array camera target. Appl. Phys. Lett. 22, 238–240 (1973). https://doi.org/10.1063/1.1654624

    Article  CAS  Google Scholar 

  66. T.E. Seidel, R.L. Meek, A.G. Cullis, Ion damage and phosphorus diffusion gettering of Au in Si. Inst. Phys. Conf. Ser. 23, 494–503 (1975). https://doi.org/10.1063/1.321664

    Article  CAS  Google Scholar 

  67. K. Murase, H. Harada, Argon implantation gettering for a “through-oxide” arsenic implanted layer. J. Appl. Phys. 48, 4404–4406 (1977). https://doi.org/10.1063/1.323398

    Article  CAS  Google Scholar 

  68. B. Golja, A.G. Nassibian, Ar implant damage gettering of generation impurities in silicon employing voltage ramping and nitrogen backscattering. IEE J. Solid-State Electron Dev. 3, 127–132 (1979). https://doi.org/10.1049/ij-ssed:19790027

    Article  Google Scholar 

  69. A.G. Nassibian, B. Golja, Investigation of Ar ion implant gettering of gold in silicon by MOS and Rutherford backscattering techniques. IEE Proc I - Solid State Electron Dev. 127, 29–36 (1980). https://doi.org/10.1049/ip-i-1.1980.0006

    Article  CAS  Google Scholar 

  70. B. Golja, A.G. Nassibian, Annealing of Si-SiO2 interface states using Ar-ion-implant damage-gettering. Solid-State Electron. 23, 1249–1254 (1980). https://doi.org/10.1016/0038-1101(80)90120-3

    Article  CAS  Google Scholar 

  71. D. Lecrosnier, J. Paugam, G. Pelous, F. Ricou, M. Salvi, Gold gettering in silicon by phosphorus diffusion and argon implantation: Mechanisms and limitations. J. Appl. Phys. 52, 5090–5097 (1981). https://doi.org/10.1063/1.329407

    Article  CAS  Google Scholar 

  72. D. Jaworska, J. Sielanko, E. Tarnowska, Au gettering by Ne and Ar implantation in silicon. Appl. Phys. A 35, 119–124 (1983). https://doi.org/10.1007/BF00620641

    Article  Google Scholar 

  73. S.S. Gong, D.K. Schroder, Implantation gettering in silicon. Solid-State Electron. 30, 209–211 (1987). https://doi.org/10.1016/0038-110(87)90151

    Article  CAS  Google Scholar 

  74. T.A. Baginski, Back-side germanium ion implantation gettering of silicon. J. Electrochem. Soc. 135, 1842–1843 (1988). https://doi.org/10.1149/1.2133007

    Article  CAS  Google Scholar 

  75. H. Bender, Investigation of the oxygen-related lattice defects in Czochralski silicon by means of electron microscope techniques. Phys. Status Solidi A 86, 245–261 (1984). https://doi.org/10.1002/pssa.2210860126

    Article  CAS  Google Scholar 

  76. C. Claeys, J. Vanhellemont, Recent progress in the understanding of crystallographic defects in silicon. J. Cryst. Growth 126, 41–62 (1993). https://doi.org/10.1016/0022-0248(93)90225-L

    Article  CAS  Google Scholar 

  77. A. Borghesi, B. Pivac, A. Sassella, A. Stella, Oxygen precipitation in silicon. J. Appl. Phys. 77, 4169–4244 (1995). https://doi.org/10.1063/1.359479

    Article  CAS  Google Scholar 

  78. W.K. Tice, T.Y. Tan, Nucleation of CuSi precipitate colonies in oxygen-rich silicon. Appl. Phys. Lett. 28, 564–565 (1976). https://doi.org/10.1063/1.88825

    Article  CAS  Google Scholar 

  79. T.Y. Tan, E.E. Gardner, W.K. Tice, Intrinsic gettering by oxide precipitate induced dislocation in Czochralski Si. Appl. Phys. Lett. 30, 175–176 (1976). https://doi.org/10.1063/1.89340

    Article  Google Scholar 

  80. M. Seacrist, M. Stinson, J. Libbert, R. Standley, J. Binns, Determination of minimum oxygen precipitate growth conditions for gettering of copper and nickel. Electrochem. Soc. Proc. 2, 638–646 (2002)

    Google Scholar 

  81. D. Yang, R. Fan, Y. Shen, D. Tian, L. Li, D. Que, Intrinsic gettering in nitrogen doped Czochralski crystal silicon. Electrochem. Soc. Proc. 17, 357–361 (2000)

    Google Scholar 

  82. M.J. Binns, S. Bertolini, R.D. Wise, D.J. Myers, T.A. McKenna, Effective intrinsic gettering for 200 mm and 300 mm p/p wafers in a low thermal budget 0.13 μm advanced CMOS logic process. Electrochem. Soc. Proc. 2002(2): 647–657 (2002)

    Google Scholar 

  83. R. Falster, V.V. Voronkov, F. Quast, On the properties of the intrinsic point defects in silicon: a perspective from crystal growth and wafer processing. Phys. Status Solidi B 222, 219–244 (2000). https://doi.org/10.1002/1521-3951(200011)222:1<219:AID-PSSB219>3.0.CO;2-U

    Article  CAS  Google Scholar 

  84. J.G. Park, K. Kurita, G.S. Lee, S. Sa, H. Furuya, Dependence of crystal nature on the gettering efficiency of iron and nickel in a Czochralski silicon wafer. Microelectron. Eng. 66, 247–257 (2003). https://doi.org/10.1016/S0167-9317)02)00916-4

    Article  CAS  Google Scholar 

  85. J. Chen, D. Yang, H. Li, X. Ma, D. Que, Germanium-doped Czochralski silicon: oxygen precipitates and their annealing behavior. Mater. Sci. Semicond. Eng. 9, 600–605 (2006). https://doi.org/10.1016/j.mssp.2006.08.009

  86. J. Vanhellemont, J. Chen, J. Lauwaert, H. Vrielinck, W. Xu, D. Yang, J.M. Rafi, H. Ohyama, E. Simoen, Germanium doping for improved silicon substrates and devices. J. Cryst. Growth 317, 8–15 (2010). https://doi.org/10.1016/j.jcrysgro.2010.11.024

    Article  CAS  Google Scholar 

  87. T.A. Frewen, T. Sinno, Vacancy self-trapping during rapid thermal annealing of silicon wafers. Appl. Phys. Lett. 89, 191903/1–3 (2006). https://doi.org/10.1063/1.2385069

  88. R. Hoelzl, M. Blietz, L. Fabry, R. Schmolke, Gettering efficiencies and their dependence on material parameters and thermal processes: how can this be modeled? Electrochem. Soc. Proc. 2, 608–625 (2002)

    Google Scholar 

  89. D. Kot, G. Kissinger, W. Hackl, A. Sattler, A. von Ammon, The role of vacancies and oxygen for setting up an efficient getter for Cu and Ni in silicon wafers. ECS Trans. 16(6), 207–218 (2008). https://doi.org/10.1149/1.2980304

    Article  CAS  Google Scholar 

  90. R.J. Falster, G.R. Fisher, G. Ferrero, Gettering thresholds for transition metals by oxygen-related defects in silicon. Appl. Phys. Lett. 59, 809–811 (1991). https://doi.org/10.1063/1.105350

    Article  CAS  Google Scholar 

  91. R. Hoelzl, L. Fabry, K.J. Range, Gettering efficiencies for Cu and Ni as function of the size and the density of oxygen precipitates in p/p- silicon epitaxial wafers. Appl. Phys. A 73, 137–142 (2001). https://doi.org/10.1007/s003390100846

    Article  Google Scholar 

  92. G. Kissinger, D. Kot, M. Klingsporn, M.A. Schubert, A. Sattler, T. Müller, Investigation of the copper gettering mechanism of oxide precipitates in silicon. ECS J. Solid State Sci. Technol. 4, N124–N129 (2015). https://doi.org/10.1149/2.0151509jss

    Article  CAS  Google Scholar 

  93. M. Aoki, A. Hara, A. Ohsawa, Intrinsic gettering of iron impurities in silicon wafers. Jpn. J. Appl. Phys. 30, 3580–3583 (1991). https://doi.org/10.1143/JJAP.30.3580

    Article  CAS  Google Scholar 

  94. M.B. Shabani, Y. Shiina, S. Shimanuki, F. Kirscht, Iron solubility in boron-doped silicon and Fe gettering mechanism in p/p+ epitaxial wafers. Solid State Phenom. 82–84, 331–340 (2002). https://doi.org/10.4028/www.scientific.net/SSP.82-84.331

    Article  Google Scholar 

  95. M. Aoki, A. Hara, Distribution of Fe in intrinsic gettered silicon wafer after annealing at supersaturation temperature. Jpn. J. Appl. Phys. 35, L1231–L1233 (1996). https://doi.org/10.1143/JJAP.35.L1231

    Article  CAS  Google Scholar 

  96. Y.H. Kim, K.S. Lee, H.Y. Chung, D.H. Hwang, H.S. Kim, H.Y. Cho, R.Y. Lee, Internal gettering of Fe, Ni and Cu in silicon wafer. J. Kor. Phys. Soc. 39, S348–S351 (2001)

    CAS  Google Scholar 

  97. D. Gräff, U. Lambert, R. Schmolke, R. Wahlich, W. Siebert, E. Daub, W. von Ammon, 200 mm epi p/p wafer: is there sufficient gettering. Electrochem. Soc. Proc. 17, 319–330 (2000)

    Google Scholar 

  98. R. Schmolke, M. Blietz, R. Hoelzl, D. Menzel, H. Bender, Bulk micro defects of p/p epitaxial wafers with nitrogen doped substrates and their gettering behavior. Electrochem. Soc. Proc. 2, 658–669 (2002)

    Google Scholar 

  99. M.B. Shabani, Y. Shiina, Y. Shimanuki, Tuning oxygen concentration at low and high temperature IG process and boron concentration in epitaxial wafer for gettering of metal impurities. Solid State Phenom. 95–96, 539–546 (2004). https://doi.org/10.4028/www.scientific.net/SSP.95-96.53

    Article  Google Scholar 

  100. M. Porrini, S. Haringer, A. Giannattasio, Reduced oxygen precipitation in heavily arsenic-doped Cz-silicon crystals. Phys. Status Solidi C 13, 766–769 (2016). https://doi.org/10.1002/pssc.201600045

  101. B. Wang, X. Zhang, Z. Ma, D. Yang, Effects of high temperature rapid thermal processing on oxygen in heavily arsenic-doped Czochralski silicon. J. Cryst. Growth 318, 183–186 (2011). https://doi.org/10.1016/j.crygro.2010.11.016

    Article  CAS  Google Scholar 

  102. X. Zhang, C. Gao, M. Fu, X. Ma, J. Vanhellemont, D. Yang, Impact of rapid thermal processing on oxygen precipitation in heavily arsenic and antimony doped Czochralski silicon. J. Appl. Phys. 113, 163510/1–7 (2013). https://doi.org/10.1063/1.4803061

  103. P. Dong, X. Liang, D. Tian, J. Zhao, C. Cao, X. Ma, D. Yang, Enhanced internal gettering in n/n+ epitaxial wafer: Coaction of nitrogen impurity and vacancy on oxygen precipitation in substrate. J. Mater. Sci.: Mater. Electron. 25, 3486–3491 (2014). https://doi.org/10.1007/s10854-014-2043-7

    Article  CAS  Google Scholar 

  104. C. Claeys, R.F. De Keersmaecker, G.J. Declerck, Technology and kinetics of SiO2 growth, in The Si-SiO2 System, ed. by P. Balk (Chap 2). Elsevier, New York (1988)

    Google Scholar 

  105. J. Hampel, P. Ehrenreich, N. Wiehl, J.V. Kratz, S. Reber, HCl gas gettering of low-cost silicon. Phys. Status Solidi 4, 767–770 (2013). https://doi.org/10.1002/pssa.201200885

    Article  CAS  Google Scholar 

  106. A.S. Salih, H.J. Kim, R.F. Davis, G.A. Rozgonyi, Extrinsic gettering via the controlled introduction of misfit dislocations. Appl. Phys. Lett. 46, 419–421 (1985). https://doi.org/10.1063/1.95598

  107. D.M. Lee, J.B. Posthill, F. Shimura, G.A. Rozgonyi, Impurity gettering by misfit dislocations in Si(2%Ge) epitaxy: Nickel. Appl. Phys. Lett. 53, 370372 (1988). https://doi.org/10.1063/1.99897

    Article  Google Scholar 

  108. D.M. Lee, G.A. Rozgonyi, Low temperature gettering of trace iron and copper by misfit dislocations in Si/Si(Ge) epitaxy. Appl. Phys. Lett. 50, 350–352 (1994). https://doi.org/10.1063/1.112370

    Article  Google Scholar 

  109. H.S. Radhakrishnan, C. Ahn, J. Van Hoeymissen, F. Dross, N. Cowern, K. Van Nieuwenhuysen, I. Gordon, R. Mertens, J. Poortmans, Gettering of transition metals by porous silicon in epitaxial silicon solar cells. Phys. Status Solidi A 209, 1866–1871 (2012). https://doi.org/10.1002/pssa.201200232

    Article  CAS  Google Scholar 

  110. F. Schiettekatte, C. Wintgens, S. Roorda, Influence of curvature on impurity gettering by nanocavities in Si. Appl. Phys. Lett. 74, 1857–1859 (1999). https://doi.org/10.1063/1.123692

    Article  CAS  Google Scholar 

  111. H. Wong-Leung, N.W. Cheung, P.K. Chu, Gettering of gold and copper with implanted carbon in silicon. Appl. Phys. Lett. 52, 889–891 (1988). https://doi.org/10.1063/1.99263

    Article  Google Scholar 

  112. S. Mohapatra, B. Joseph, D.P. Mahapatra, P. Chakraborty, High efficiency gettering of Au in Si(111) by MeV C implantation. Nucl. Instr. Methods Phys. Res. B 217, 578–582 (2004). https://doi.org/10.1016/j.nimb.2003.12.005

  113. P. Rorh, J.J. Grob, P. Siffert, Gold and platinum accumulation on buried defects in silicon. Nucl. Instr. Methods Phys. Res. B 80, 640–643 (1993). https://doi.org/10.1016/0168-583X(93)96199-M

    Article  Google Scholar 

  114. S. Mohapatra, B. Joseph, B. Satpati, D.P. Mahapatra, Gettering of implanted Au in MeV C implanted Si. Appl. Phys. A 82, 297–304 (2006). https://doi.org/10.1007/s00339-005-3297-y

    Article  CAS  Google Scholar 

  115. W. Skorupa, R. Kögler, K. Schmalz, P. Gaworzewski, G. Morgensten, H. Syhre, Iron gettering and doping due to MeV carbon implantation. Nucl. Instr. Methods Phys. Res. B 74, 70–74 (1993). https://doi.org/10.1016/0168-583X(93)95016-X

    Article  CAS  Google Scholar 

  116. O. Kononchuk, R.A. Brown, Z. Radzimski, G.A. Rozgonyi, F. Gonzalez, Gettering of Fe to below 1010 cm-3 in MeV self-implanted Czochralski and float zone silicon. Appl. Phys. Lett. 69, 4203–4205 (1996). https://doi.org/10.1063/1.116986

    Article  CAS  Google Scholar 

  117. S.V. Koveshnikov, G.A. Rozgonyi, Mechanism of iron gettering in MeV Si ion implanted epitaxial silicon. J. Appl. Phys. 84, 3078–3084 (1998). https://doi.org/10.1063/1.368462

    Article  CAS  Google Scholar 

  118. R.A. Brown, O. Konunchuk, G.A. Rozgonyi, S. Koveshnikov, A. Knigths, P.J. Simpson, F. Gonzalez, Impurity gettering to secondary defects created by MeV ion implantation in silicon. J. Appl. Phys. 84, 2459–2465 (1998). https://doi.org/10.1063/1.368438

    Article  CAS  Google Scholar 

  119. A. Kvit, R.A. Yankov, G. Duscher, G.A. Rozgonyi, J.M. Glasko, Formation of nanoscale voids and related metallic impurity gettering in high-energy ion-implanted and annealed epitaxial silicon. Appl. Phys. Lett. 83, 1367–1369 (2003). https://doi.org/10.1063/1.1601678

    Article  CAS  Google Scholar 

  120. C.J. Peter, J.W. Corbett, C. Deng, Z. Atzmon, The gettering of copper by keV implantation of germanium into silicon. J. Appl. Phys. 78, 3012–3014 (1995). https://doi.org/10.1063/1.360050

    Article  Google Scholar 

  121. K. Hozawa, K. Takeda, K. Torii, Impact of the backside Cu contamination in the 3D integration process. VLSI Techn. Digest 172–173 (2009).

    Google Scholar 

  122. K.W. Lee, J.-C. Bea, T. Fukushima, T. Tanaka, M. Koyanagi, Cu retardation performance of extrinsic gettering layers in thinned wafers evaluated by transient capacitance measurement. J. Electrochem. Soc. 158, H795–H799 (2011). https://doi.org/10.1149/1.3597317

    Article  CAS  Google Scholar 

  123. D.J. Eaglesham, A.E. White, L.C. Feldman, N. Moriya, D.C. Jacobson, Equilibrium shape of Si. Phys. Rev. Lett. 70, 1643–1647 (1993). https://doi.org/10.1103/PhysRevLett.70.1643

    Article  CAS  Google Scholar 

  124. M.L. David, J.F. Barbot, S. Rousselet, F. Pailloux, D. Babonneau, M.F. Beaufort, L. Pizzagalli, M. Drouet, E. Simoen, C. Claeys, Extended defects created by light ion implantation in Ge. ECS Trans. 16(6), 163–175 (2008). https://doi.org/10.1149/1.2989301

    Article  CAS  Google Scholar 

  125. S.M. Myers, D.M. Follstaedt, D.M. Bishop, J.W. Medernach, Gettering of metal impurities by cavities in silicon. Electrochem. Soc. Proc. 94(10), 808–819 (1994)

    Google Scholar 

  126. S.M. Myers, D.M. Follstaedt, G.A. Petersen, Ch. Seager, H.J. Stein, W.R. Wampler, Chemical and electrical properties of cavities in silicon and germanium. Nucl. Instr. Methods Phys. Res. B 106, 379–385 (1995). https://doi.org/10.1016/0168-583X(96)80033-4

    Article  CAS  Google Scholar 

  127. G.A. Petersen, S.M. Myers, D.M. Follstaedt, Gettering of transition metals by cavities in silicon formed by helium ion implantation. Nucl. Instr. Methods Phys. Res. B 127, 301–306 (1997). https://doi.org/10.1016/s0168-583x(96)00944-5

  128. V. Raineri, P.G. Fallica, G. Percolla, A. Battaglia, M. Barbagallo, S.U. Campisano, Gettering of metals by voids in silicon. J. Appl. Phys. 78, 3727–3735 (1995). https://doi.org/10.1063/1.359953

    Article  CAS  Google Scholar 

  129. A. Kinomura, J.S. Williams, J. Wong-Leung, M. Petravic, Gettering of platinum and silver to cavities formed by hydrogen implantation in silicon. Nucl. Instr. Methods Phys. Res. B 127, 297–300 (1997). https://doi.org/10.1016/S0168-583X(96)00943-3

    Article  Google Scholar 

  130. D.C. Schmidt, B.G. Svensson, N. Keskitalo, S. Godey, E. Ntsoenzok, J.F. Barbot, C. Blanchard, Proximity gettering of platinum in proton irradiated silicon. J. Appl. Phys. 84, 4214–4218 (1998). https://doi.org/10.1063/1.368695

    Article  CAS  Google Scholar 

  131. B. Holm, K. Bonde Nielsen, Spatial confinement and saturation of substitutional platinum by diffusion into ion-beam damaged silicon. J. Appl. Phys. 78, 5970–5974 (1995). https://doi.org/10.1063/1.360600

    Article  CAS  Google Scholar 

  132. B. Stritzker, M. Petravic, J. Wong-Leung, J.S. Williams, Selectivity of nanocavities and dislocations for gettering Cu and Fe in silicon. Appl. Phys. Lett. 78, 2682–2684 (2001). https://doi.org/10.1063/1.1363689

    Article  CAS  Google Scholar 

  133. S.M. Myers, D.M. Follstaedt, Interaction of copper with cavities in silicon. J. Appl. Phys. 79, 1337–1550 (1996). https://doi.org/10.1063/1.361031

    Article  CAS  Google Scholar 

  134. D.M. Follstaedt, S.M. Myers, G.A. Petersen, J.W. Medernach, Cavity formation and impurity gettering in He-implanted Si. J. Electron. Mater. 25, 151–164 (1996). https://doi.org/10.1007/BF02666190

    Article  Google Scholar 

  135. A. Grob, P. Rohr, G. Mariani, J. Sevely, J.J. Grob, Kinetic of impurity gettering on buried defects creation by MeV argon implantation. Nucl. Instr. Methods Phys. Res. B 112, 169–172 (1996). https://doi.org/10.1016/0168-583X(95)01014-9

    Article  CAS  Google Scholar 

  136. F. Russo, G. Moccia, G. Nardone, R. Alfonsetti, G. Polsinessli, A. D’Angelo, A. Patacchiola, M. Liverani, P. Pianezza, T. Lippa, M. Carlini, M.L. Polignano, I. Mica, E. Cazzini, M. Ceresoli, D. Codegoni, Proximity gettering of slow diffuser contamination in CMOS image sensors. Solid-State Electron. 91, 91–99 (2014). https://doi.org/10.1016/j.sse.2013.10.011

    Article  CAS  Google Scholar 

  137. S. Shirasawa, K. Sueoka, T. Yamaguchi, K Maekawa (2015) Useful database of effective gettering sites for metal impurities in Si wafers with first principles calculations. ECS J. Solid State Sci. Technol. 4, P351-P355. https://doi.org/10.1149/2.0051509js

  138. A. Haarahiltunen, H. Väinölä, O. Anttila, M. Yli-Koski, J. Sinkkonen, Experimental and theoretical study of heterogeneous iron precipitation in silicon. J. Appl. Phys. 101, 043507/1–6 (2007). https://doi.org/10.1063/1.2472271

  139. T. Yamaguchi, T. Yamashita, T. Kamino, Y. Goto, T. Kuroi, M. Masazumi, White spots reduction by ultimate proximity metal gettering at carbon complexes formed underneath contact area in CMOS image sensors. VLSI Techn Techn Dig 978/1–2 (2016). https://doi.org/10.1109/vlsit.2016.7573447

  140. I.H. Kim, J.S. Park, T.A. Shim, J.G. Park, Si CMOS image-sensors designed with hydrogen-ion implantation induced nanocavities for enhancing output voltage sensing margin via proximity gettering. IEEE Trans. Electron Dev. 64, 2345–2349 (2017). https://doi.org/10.1109/TED.2017.2677948

    Article  CAS  Google Scholar 

  141. T.I. Kamins, S.Y. Chiang, Heavy metal gettering in silicon-on-insulator structures formed by oxygen implantation into silicon. J. Appl. Phys. 58, 1559–2563 (1985). https://doi.org/10.1063/1.335910

    Article  Google Scholar 

  142. W. Skorupa, N. Hatzopoulos, R.A. Yankov, A.B. Danilin, Proximity gettering of transition metals by implanted oxygen structures. Appl. Phys. Lett. 67, 1992–2994 (1995). https://doi.org/10.1063/1.114929

    Article  Google Scholar 

  143. J. Jablonski, Y. Miyamura, H. Tsuya, Gettering of Cu and Ni impurities in SIMOX wafers. J. Electrochem. Soc. 142, 2059–2066 (1995). https://doi.org/10.1149/1.2044241

    Article  CAS  Google Scholar 

  144. M. Zhang, C. Lin, P.L.F. Hemment, K. Gutjahr, U. Gosele, Study of gettering to cavities in separation by implantation of oxygen substrates. Appl. Phys. Lett. 72, 830–832 (1998). https://doi.org/10.1063/1.120907

    Article  CAS  Google Scholar 

  145. M. Zhang, C. Lin, X. Duo, Z. Lin, Z. Zhou, Comparison of Cu gettering to H+ and He+ implantation-induced cavities in separation-by-implantation-of-oxygen wafers. J. Appl. Phys. 85, 94–98 (1999). https://doi.org/10.1063/1.369426

    Article  CAS  Google Scholar 

  146. M. Bruel, Separation of silicon wafers by the smart cut method. Mater. Res. Innovat. 3, 9–13 (1999). https://doi.org/10.1007/s1001900501

    Article  CAS  Google Scholar 

  147. M. Yli-Koski, A. Haarahiltunen, J. Hintsala, H. Savin, Iron segregation in silicon-on-insulator wafer with polysilicon interlayer. Phys. Status Solidi A 209, 724–726 (2012). https://doi.org/10.1002/pssa.201127718

  148. K. Mahfoud, M. Loghmarti, J.C. Muller, P. Siffert, Influence of carbon and oxygen on phosphorus and aluminium co-gettering in silicon solar cells. Mater. Sci. Eng. B 36, 63–67 (1996). https://doi.org/10.1016/0921-5107(95)01284-2

    Article  Google Scholar 

  149. I. Périchaud, Gettering of impurities in solar silicon. Solar Energy Mater. Solar Cells 72, 315–326 (2002). https://doi.org/10.1016/S0927-0248(01)00179-9

    Article  Google Scholar 

  150. Y. Jin, S.T. Dunham, Modeling of carbon clustering and associated metal gettering. ECS Trans. 64(11), 211–218 (2014). https://doi.org/10.1149/06411.0211ecst

  151. A. Yazdani, R. Chen, S.T. Dunham, Coupled modeling of the competitive gettering of transition metals and impact on performance of lifetime sensitive devices. J. Appl. Phys. 121, 095702/1–7 (2017). https://doi.org/10.1063/1.4976525

  152. A.H. Gencer, S.T. Dunham, A combined model for {311} defect and dislocation loop evolution: Analytical formulation of kinetic precipitation model. J. Appl. Phys. 91, 2883–2889 (2002). https://doi.org/10.1063/1.1446223

    Article  CAS  Google Scholar 

  153. B.C. Trzynadlowski, S.T. Dunham, A reduced moment-based model for oxygen precipitation in silicon. J. Appl. Phys. 114, 243508/1–10 (2013). https://doi.org/10.1063/1.4849435

  154. S.M. Myers, G.A. Petersen, D.M. Follstaedt, C.H. Seager, T.J. Headley, J.R. Michael, W. Deweerd, G. Koops, J. Verheyen, H. Pattyn, Segregation gettering by implantation-formed cavities and B-Si precipitates in silicon. Electrochem. Soc. Proc. 98(1), 1150–1161 (1998)

    Google Scholar 

  155. K. Sueoka, M. Akatsuka, T. Ono, E. Asayama, Y. Koike, N. Adachi, S. Sadamitsu, H. Katahama (2000) Oxygen precipitation behavior and its optimum condition for internal gettering and mechanical strength in epitaxial and polished silicon wafers. Electrochem. Soc. Proc. 17, 164–179 (2000)

    Google Scholar 

  156. R. Falster, W. Bergholz, The gettering of transition metals by oxygen-related defects in silicon. J. Electrochem. Soc. 137, 1548–1559 (1990). https://doi.org/10.1149/1.2086709

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cor Claeys .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claeys, C., Simoen, E. (2018). Gettering and Passivation of Metals in Silicon and Germanium . In: Metal Impurities in Silicon- and Germanium-Based Technologies . Springer Series in Materials Science, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-319-93925-4_8

Download citation

Publish with us

Policies and ethics