Skip to main content

Electrical Activity of Iron and Copper in Si, SiGe and Ge

  • Chapter
  • First Online:
Metal Impurities in Silicon- and Germanium-Based Technologies

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 270))

  • 973 Accesses

Abstract

The main reason for the interest in metal impurities in semiconductors is their electrical activity, resulting in device performance and yield degradation (to be discussed in Chap. 7). In this chapter, the electrical properties of the 3d transition metals iron and copper will be discussed in detail. First, the different configuration of the two metals will be outlined, i.e., whether they occur in substitutional or interstitial form, their interaction with other point defects to form pairs and complexes and, finally, the precipitation behavior. Besides homogeneous nucleation which results in the formation of silicon-rich silicides for the case of Fe and metal-rich Cu3Si for copper, there can also be heterogeneous precipitation/decoration on extended defects in the interior of a wafer. The wafer surface may also be a preferential precipitation site. Next, the electrical activity, i.e., the deep levels, associated with Fe (Cu) will be described in detail, both in Si and (Si)Ge. An overview of the deep-level parameters of the different point and extended defects will be given. Also the activation of pre-existing extended defects will be discussed. Finally, dedicated, mainly lifetime-based analysis techniques will be reviewed to identify Fe (Cu) in silicon and, whenever possible, to perform in-line wafer-based mapping. Most of these techniques have recently been developed for the case of mc-silicon wafers but can be extended for in-line process monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.H. Woodbury, W.W. Tyler, Triple acceptors in germanium. Phys. Rev. 105, 84–92 (1957). https://doi.org/10.1103/PhysRev.105.84

  2. G.D. Watkins, P.M. Williams, Vacancy model for substitutional Ni, Pd, Pt, Au0 in silicon. Phys. Rev. B 52, 16575–16580 (1995). https://doi.org/10.1103/PhysRevB.52.16575

  3. C. Claeys, E. Simoen (eds.), Germanium-Based Technologies—From Materials to Devices (Elsevier, 2007)

    Google Scholar 

  4. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron and its complexes in silicon. Appl. Phys. A 69, 13–44 (1999). https://doi.org/10.1007/s003399900059

  5. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron contamination in silicon technology. Appl. Phys. A 70, 489–534 (2000). https://doi.org/10.1007/s003390000458

  6. G.W. Ludwig, H.H. Woodbury, Electron spin resonance in semiconductors. Solid State Phys. 13, 223–304 (1962). https://doi.org/10.1016/S0081-1947(08)60458-0

  7. Y.H. Lee, R.L. Kleinhenz, J.W. Corbett, EPR of a thermally induced defect in silicon. Appl. Phys. Lett. 31, 142–144 (1977). https://doi.org/10.1063/1.89630

  8. E.R. Weber, Transition metals in silicon. Appl. Phys. A 30, 1–22 (1983). https://doi.org/10.1007/BF00617708

  9. H. Feichtinger, J. Waltl, A. Gschwandtner, Localization of the Fe0-level in silicon. Solid State Commun. 27, 867–871 (1978). https://doi.org/10.1016/0038-1098(78)90194-1

    Article  CAS  Google Scholar 

  10. S. Greulich-Weber, J.R. Niklas, E.R. Weber, J.M. Spaeth, Electron nuclear double resonance of interstitial iron in silicon. Phys. Rev. B 30, 6292–6299 (1984). https://doi.org/10.1103/PhysRevB.30.6292

  11. G. Weyer, Defects in semiconductors—results from Mössbauer spectroscopy. Hyperfine Interact. 177, 1–13 (2007). https://doi.org/10.1007/s10751-008-9607-y

  12. U. Wahl, J.G. Correia, E. Rita, J.P. Araújo, J.C. Soares, The ISOLDE Collaboration, Lattice sites of implanted Fe in Si. Phys. Rev. B 72, 014115/1-8 (2005). https://doi.org/10.1103/physrevb.72.014115

  13. U. Wahl, J.G. Correia, E. Rita, J.P. Araújo, J.C. Soares, The ISOLDE Collaboration, Fe and Cu in Si: lattice sites and trapping at implantation-related defects. Nucl. Instr. Meth. Phys. Res. B 253, 167–171 (2006). https://doi.org/10.1016/j.nimb.2006.10.0

  14. D.J. Silva, U. Wahl, J.G. Correia, J.P. Araújo, Influence of n+ and p+ doping on the lattice sites of implanted Fe in Si. J. Appl. Phys. 114, 103503/1-9 (2013) https://doi.org/10.1063/1.4819210

  15. S.H. Muller, G.M. Tuynman, E.G. Sieverts, C.A.J. Ammerlaan, Electron paramagnetic resonance on iron-related centers in silicon. Phys. Rev. B 25, 25–40 (1982). https://doi.org/10.1103/PhysRevB.25.25

  16. T. Mchedlidze, M. Suezawa, Properties of an iron-vacancy pair in silicon. Jpn. J. Appl. Phys. 41, 7288–7292 (2002). https://doi.org/10.1143/JJAP.41.7288

  17. H.P. Gunnlaugsson, G. Weyer, N.E. Christensen, M. Dietrich, M. Fanciulli, K. Bharuth-Ram, R. Sielemann, A. Svane, The ISOLDE Collaboration, On the kinetics of the formation of interstitial Fe-vacancy pairs in silicon at high temperatures. Physica B 340-342, 532–536 (2003). https://doi.org/10.1016/j.physb.2003.09.141

  18. G. Weyer, S. Degroote, M. Fanciuli, V.N. Fedoseyev, G. Langouche, V.I. Mishin, M. van Bavel, A. Vantomme, Mössbauer spectroscopy of Fe in silicon with the novel laser-ionized 57Mn+ ion beam at ISOLDE. Mater. Sci. Forum 258–263, 437–442 (1997). https://doi.org/10.4028/www.scientific.net/MSF

  19. D. Gilles, W. Schroter, W. Bergholz, Impact of the electronic structure on the solubility and diffusion of 3d transition metal elements in silicon. Phys. Rev. B 41, 5770–5782 (1990). https://doi.org/10.1103/PhysRevB.41.5770

  20. H.P. Gunnlaugsson, G. Weyer, N.E. Christensen, M. Dietrich, M. Fanciulli, K. Bharuth-Ram, R. Sielemann, A. Svane, The ISOLDE Collaboration, Mössbauer spectroscopy on Fe impurities in germanium. Physica B 340-342, 537–540 (2003). https://doi.org/10.1016/j.physb.2003.09.140

  21. S. Decoster, S. Cottenier, B. De Vries, H. Emmerich, U. Wahl, J.G. Correia, A. Vantomme, Transition metal impurities on the bond-centered site in germanium. Phys. Rev. Lett. 102, 065502/1-4 (2009). https://doi.org/10.1103/physrevlett.102.065502

  22. M. Höhne, U. Juda, J. Wollweber, D. Schulz, J. Donecker, A. Gerhardt, Electron paramagnetic resonance of phosphorus, platinum, and iron in Float Zone Si1−xGex crystals. Mater. Sci. Forum 196–201, 359–364 (1995). https://doi.org/10.4028/www.scientific.net/MSF.196-201.359

  23. H. Reiss, C.S. Fuller, F.J. Morin, Chemical interaction among defects in germanium and silicon. Bell Syst. Techn. J. 3, 535–636 (1956). https://doi.org/10.1002/j.1538-7305.1956.tb02393

    Article  Google Scholar 

  24. H. Lemke, Energieniveaus und Bindungsenergien von Ionenpaaren in Silizium. Phys. Status Solidi A 76, 223–234 (1983). https://doi.org/10.1002/pssa.2210760126

    Article  CAS  Google Scholar 

  25. F.S. Ham, Theory of diffusion-limited precipitation. J. Phys. Chem. Solids 6, 335–351 (1958). https://doi.org/10.1016/0022-3697(58)90053-2

    Article  CAS  Google Scholar 

  26. J. Tan, D. Macdonald, F. Rougieux, A. Cuevas. Accurate measurement of the formation rate of iron-boron pairs in silicon. Semicond. Sci. Technol. 26, 055019/1-5 (2011). https://doi.org/10.1088/0268-1242/26/5/055019

  27. L.J. Geerligs, D. Macdonald, Dynamics of light-induced FeB pair dissociation in crystalline silicon. Appl. Phys. Lett. 85, 5227–5229 (2004). https://doi.org/10.1063/1.1823587

    Article  CAS  Google Scholar 

  28. O.V. Feklisova, A.L. Parakhonsky, E.B. Yakimov, J. Weber, Dissociation of iron-related centers in Si stimulated by hydrogen. Mater. Sci. Eng. B 71, 268–271 (2000). https://doi.org/10.1016/S0921-5107(99)00388-8

    Article  Google Scholar 

  29. C.K. Tang, L. Vines, B.G. Svensson, E.V. Monakhov, Interaction between hydrogen and the Fe-B pair in boron-doped p-type silicon. Appl. Phys. Lett. 99, 052106/1-3 (2011). https://doi.org/10.1063/1.3619848

    Article  CAS  Google Scholar 

  30. T. Bartel, F. Gibaja, O. Graf, D. Gross, M. Kaes, M. Heuer, F. Kirscht, C. Möller, K. Lauer, Dynamics of iron-acceptor-pair formation in co-doped silicon. Appl. Phys. Lett. 103, 202109/1-4 (2013). https://doi.org/10.1063/1.4830227

    Article  CAS  Google Scholar 

  31. C. Möller, T. Bartel, F. Gibaja, K. Lauer, Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon. J. Appl. Phys. 116, 024503/1-8 (2014). https://doi.org/10.1063/1.4889817

    Article  CAS  Google Scholar 

  32. D. Macdonald, A. Cuevas, L.J. Geerligs, Measuring dopant concentrations in compensated p-type crystalline silicon via iron-acceptor pairing. Appl. Phys. Lett. 92, 202119/1-3 (2008). https://doi.org/10.1063/1.2936840

    Article  CAS  Google Scholar 

  33. M. Höhne, U. Juda, H. Riemann, J.-M. Spaeth, S. Greulich-Weber, Distant iron-shallow-donor pairs in silicon detected by electron paramagnetic resonance. Phys. Rev. B 49, 16999–17006 (1994). https://doi.org/10.1103/PhysRevB.49.16999

    Article  Google Scholar 

  34. T. Mchedlidze, M. Suezawa, An iron-phosphorus pair in silicon. J. Phys. Condens. Matter 16, L79–L84 (2004). https://doi.org/10.1088/0953-8984/16/8/L02

  35. J.J. van Kooten, E.G. Sieverts, C.A.J. Ammerlaan. Electron paramagnetic resonance of an Fe-Fe pair in silicon. Solid State Commun. 64, 1489–1494 (1987). https://doi.org/10.1016/0038-1098(87)90364-4

  36. S. Strube, H. Vollmer, R. Labusch, Electron paramagnetic resonance (EPR) and photo-EPR studies of aggregate centers with two iron atoms in silicon. Appl. Phys. A 81, 87–91 (2005). https://doi.org/10.1007/s00339-004-3031-1

    Article  CAS  Google Scholar 

  37. M. Seibt, R. Khalil, V. Kveder, W. Schröter, Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials. Appl. Phys. A 96, 235–253 (2009). https://doi.org/10.1007/s00339-008-5027-8

    Article  CAS  Google Scholar 

  38. B. Hackl, K.-J. Range, P. Stallhofer, L. Fabry, Correlation between DLTS and TRXFA measurements of copper and iron contaminations in FZ and CZ silicon wafers; application to gettering efficiencies. J. Electrochem. Soc. 139, 1495–1498 (1992). https://doi.org/10.1149/1.2069438

    Article  CAS  Google Scholar 

  39. D.A. Ramappa, W.B. Henley, Stability of iron-silicide precipitates in silicon. J. Electrochem. Soc. 144, 4353–4356 (1997). https://doi.org/10.1149/1.1838192

    Article  CAS  Google Scholar 

  40. T. Mchedlidze, K. Matsumoto, Electrically detected magnetic resonance signal from iron contaminated Czochralski silicon crystal. J. Appl. Phys. 83, 4042–4048 (1998). https://doi.org/10.1063/1.367160

    Article  CAS  Google Scholar 

  41. J. Bailey, E.R. Weber, Precipitation of iron in polycrystalline silicon. Phys. Status Solidi A 137, 515–523 (1993). https://doi.org/10.1002/pssa.2211370221

    Article  CAS  Google Scholar 

  42. J. Bailey, S.A. McHugo, H. Hieslmair, E.R. Weber, Efficiency-limiting defects in silicon solar cell material. J. Electron. Mater. 25, 1417–1421 (1996). https://doi.org/10.1007/BF02655376

    Article  CAS  Google Scholar 

  43. A. Mesli, T. Heiser, N. Amroun, P. Siffert, Charge-state-dependent iron precipitation in silicon. Appl. Phys. Lett. 57, 1898–1900 (1990). https://doi.org/10.1063/1.104005

    Article  CAS  Google Scholar 

  44. T. Heiser, A. Mesli, How far does the charge state affect the iron behavior in silicon? Appl. Phys. Lett. 58, 2240–2242 (1991). https://doi.org/10.1063/1.104938

    Article  CAS  Google Scholar 

  45. A. Haarahiltunen, H. Väinölä, O. Anttila, E. Saarnilehto, M. Yli-Koski, J. Storgårds, J. Sinkkonen, Modeling of heterogeneous precipitation of iron in silicon. Appl. Phys. Lett. 87, 151908/1-1 (2005). https://doi.org/10.1063/1.2099531

    Article  CAS  Google Scholar 

  46. A. Haarahiltunen, H. Väinölä, O. Anttila, M. Yli-Koski, J. Sinkkonen, Experimental and theoretical study of heterogeneous iron precipitation in silicon. J. Appl. Phys. 101, 043507/1-6 (2007). https://doi.org/10.1063/1.2472271

    Article  CAS  Google Scholar 

  47. D.P. Fenning, J. Hofstetter, M.I. Bertoni, G. Coletti, B. Lai, C. del Cañizo, T. Buonassisi. Precipitated iron: a limit on gettering efficacy in multicrystalline silicon. J. Appl. Phys. 113, 044521/1-12 (2013). https://doi.org/10.1063/1.4788800

  48. J. Schön, H. Habenicht, M.C. Schubert, W. Warta, Understanding the distribution of iron in multicrystalline silicon after emitter formation: theoretical model and experiments. J. Appl. Phys. 109, 063717/1-8 (2011). https://doi.org/10.1063/1.3553858

    Article  CAS  Google Scholar 

  49. J.D. Murphy, R.J. Falster, The relaxation behaviour of supersaturated iron in single-crystal silicon at 500 to 750 °C. J. Appl. Phys. 112, 113506/1-7 (2012). https://doi.org/10.1063/1.4767378

  50. W. Rein, S.W. Glunz, Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy. J. Appl. Phys. 98, 113711/1-12 (2005). https://doi.org/10.1063/1.2106017

    Article  CAS  Google Scholar 

  51. D. Macdonald, L.J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon. Appl. Phys. Lett. 85, 4061–4063 (2004). https://doi.org/10.1063/1.1812833

    Article  CAS  Google Scholar 

  52. H. Kohno, H. Hieslmair, A.A. Istratov, E. Weber, Temperature dependence of the iron donor level in silicon at device processing temperatures. Appl. Phys. Lett. 76, 2734–2736 (2000). https://doi.org/10.1063/1.126459

    Article  CAS  Google Scholar 

  53. A.S. McHugo, R.J. McDonald, A.R. Smith, D.L. Hurley, E.R. Weber, Iron solubility in highly boron-doped silicon. Appl. Phys. Lett. 73, 1424–1426 (1998). https://doi.org/10.1063/1.121964

    Article  CAS  Google Scholar 

  54. K. Nauka, T.I. Kamins, Deep state defects in strained and relaxed Si1−xGex on Si introduced by 3d transition metal and 5d noble metal impurities. Physica B 273–274, 603–607 (1999). https://doi.org/10.1016/S0921-4526(99)00584-0

  55. D. Macdonald, A. Cuevas, J. Wong-Leung, Capture cross sections of the acceptor level of iron-boron pairs in p-type silicon by injection-level dependent lifetime measurements. J. Appl. Phys. 89, 7932–7939 (2001). https://doi.org/10.1063/1.1372156

    Article  CAS  Google Scholar 

  56. J.E. Birkholz, K. Bothe, D. Macdonald, J. Schmidt, Electronic properties of iron-boron pairs in crystalline silicon by temperature- and injection-level-dependent lifetime measurements. J. Appl. Phys. 97, 103708/1-6 (2005). https://doi.org/10.1063/1.1897489

    Article  CAS  Google Scholar 

  57. D. Macdonald, T. Roth, P.N.K. Deenapanray, T. Trupke, R.A. Bardos, Doping dependence of the carrier lifetime crossover point upon dissociation of iron-boron pairs in crystalline silicon. Appl. Phys. Lett. 89, 142107/1-3 (2006). https://doi.org/10.1063/1.2358126

  58. A. Chantre, D. Bois, Metastable-defect behavior in silicon: charge-state-controlled reorientation of iron-aluminum pairs. Phys. Rev. B 31, 7979–7988 (1985). https://doi.org/10.1103/PhysRevB.31.7979

    Article  CAS  Google Scholar 

  59. H. Nakashima, T. Sadoh, T. Tsurushima, Electrical and thermal properties of structurally metastable iron-boron pairs in silicon. Phys. Rev. B 49, 16983–16993 (1994). https://doi.org/10.1103/PhysRevB.49.16983

    Article  CAS  Google Scholar 

  60. L. Dobaczewski, P. Kamiński, R. Kozłowski, M. Surma, High resolution DLTS studies of transition-metal-related defects in silicon. Mater. Sci. Forum 196–201, 669–676 (1995). https://doi.org/10.4028/www.scientific.net/MSF.196-201.669

  61. H. Conzelmann, Photoluminescence of transition metal complexes in silicon. Appl. Phys. A 42, 1–18 (1987). https://doi.org/10.1007/BF00618154

    Article  Google Scholar 

  62. A. Mesli, B. Vileno, C. Eckert, A. Slaoui, C. Pedersen, A. Nylandsted Larsen, N.V. Abrosimov. Iron in relaxed Si1−xGex alloy: band gap related levels, diffusion, and alloying effects. Phys. Rev. B 66, 045206/1-12 (2002). https://doi.org/10.1103/physrevb.66.045206

  63. VI. Kolkovsky, A. Mesli, L. Dobaczewski, N.V. Abrosimov, Z.R. Zytkiewicz, A.R. Peaker, Stable and metastable configurations of iron atoms in SiGe alloys. J. Phys. Cond. Matter 17, S2267–S2272 (2005). https://doi.org/10.1088/0953-8984/17/22/014

  64. Vl. Kolkovsky, A. Mesli, L. Dobaczewski, N.V. Abrosimov, Z.R. Żietkiwicz, A.R. Peaker, Interaction of iron with the local environment in SiGe alloys investigated with Laplace transform deep level spectroscopy. Phys. Rev. B 74, 195204/1-8 (2006). https://doi.org/10.1103/physrevb.74.195204

  65. A. Mesli, VI. Kolkovsky, L. Dobaczewski, A. Nylandsted Larsen, N.V. Abrosimov, Defects and impurities in SiGe: the effect of alloying. Nucl. Instrum. Meth. Phys. Res. B 253, 154–161 (2006). https://doi.org/10.1016/j.nimb.2006.10.025

  66. P. Kruszweski, VI. Kolkovsky, A. Mesli, L. Dobaczewski, N.V. Abrosimov, V.P. Markevich, A.R. Peaker, Alloy shift of “no-germanium” iron-related electronic levels in unstrained silicon-germanium alloys. Phys. Rev. B 76, 233203/1-4 (2007). https://doi.org/10.1103/physrevb.76.233203

  67. P. Kruszewski, A. Mesli, L. Dobaczewski, N.V. Abrosimov, V.P. Markevich, A.R. Peaker, Iron-aluminium pair reconfiguration processes in SiGe alloys. J. Mater. Sci. Mater. Electron. 18, 759–762 (2007). https://doi.org/10.1007/10854-006-9104-5

    Article  CAS  Google Scholar 

  68. T.F. Ciszek, T.H. Wang, Silicon defect and impurity studies using float-zone crystal growth as a tool. J. Cryst. Growth 237–239, 1685–1691 (2002). https://doi.org/10.1016/S0022-0248(01)02325-9

    Article  Google Scholar 

  69. J. Schmidt, D. Macdonald, Recombination activity of iron-gallium and iron-indium pairs in silicon. J. Appl. Phys. 97, 113712/1-9 (2005). https://doi.org/10.1063/1.1929096

  70. Y. Yoon, Y. Yan, N.P. Ostrom, J. Kim, G. Rozgonyi, Deep level transient spectroscopy and minority carrier lifetime study on Ga-doped continuous Czochralski silicon. Appl. Phys. Lett. 101, 222107/1-4 (2012). https://doi.org/10.1063/1.4766337

  71. Y. Gurimskaya, D. Mathiot, A. Sellai, P. Kruszewski, L. Dobaczewski, A. Nylandsted Larsen, A. Mesli, Spectroscopic studies of iron and chromium in germanium. J. Appl. Phys. 110, 113707/1-7 (2011). https://doi.org/10.1063/1.3664761

  72. J. Lauwaert, J. Vanhellemont, E. Simoen, H. Vrielinck, P. Clauws, Electronic properties of iron and cobalt impurity centres in germanium. J. Appl. Phys. 111, 113713/1-7 (2012). https://doi.org/10.1063/1.4729037

  73. P. Kaminski, R. Kozlowski, A. Jelenski, T. Mchedlidze, M. Suezawa, High-resolution photoinduced transient spectroscopy of electrically active iron-related defects in electron irradiated high-resistivity silicon. Jpn. J. Appl. Phys. 42, 5415–5419 (2003). https://doi.org/10.1143/JJAP.42.5415

    Article  CAS  Google Scholar 

  74. D. Abdelbarey, V. Kveder, W. Schröter, M. Seibt, Light-induced point defect reactions of residual iron in crystalline silicon after aluminum gettering. J. Appl. Phys. 108, 043519/1-6 (2010). https://doi.org/10.1063/1.3474658

  75. C.K. Tang, L. Vines, B.G. Svensson, E.V. Monakhov, Deep level transient spectroscopy on proton-irradiated Fe-contaminated p-type silicon. Phys. Status Solidi C 9, 1992–1995 (2012). https://doi.org/10.1002/pssc.201200163

    Article  CAS  Google Scholar 

  76. C.K. Tang, L. Vines, V.P. Markevich, B.G. Svensson, E.V. Monakhov, Divacancy-iron complexes in silicon. J. Appl. Phys. 113, 044503/1-4 (2013). https://doi.org/10.1063/1.4788695

  77. B.A. Komarov, Special features of radiation-defect annealing in silicon p-n structures: the role of Fe impurity atoms. Semiconductors 38, 1041–1046 (2004). https://doi.org/10.1134/1.1797482

    Article  CAS  Google Scholar 

  78. S. Tanaka, H. Kitagawa, Diffusion and electrical properties of iron-related defects in n-type silicon grown by Czochralski- and floating zone method. Jpn. J. Appl. Phys. 37, 4656–4662 (1998). https://doi.org/10.1143/JJAP.37.4656

    Article  CAS  Google Scholar 

  79. T. Mchedlidze, M. Kittler, Involvement of iron-phosphorus complexes in iron gettering for n-type silicon. Phys. Status Solidi A 203, 786–791 (2006). https://doi.org/10.1002/pssa.200564512

    Article  CAS  Google Scholar 

  80. T. Sadoh, K. Tsukamoto, A. Baba, D. Bai, A. Kenjo, T. Tsurushima, H. Mori, H. Nakashima, Deep level of iron-hydrogen complex in silicon. J. Appl. Phys. 82, 3828–3831 (1997). https://doi.org/10.1063/1.365746

    Article  CAS  Google Scholar 

  81. S. Leonard, V.P. Markevich, A.R. Peaker, B. Hamilton, J.D. Murphy, Evidence for an iron-hydrogen complex in p-type silicon. Appl. Phys. Lett. 107, 032103/1-5 (2015). https://doi.org/10.1063/1.4927323

  82. R. Khalil, V. Kveder, W. Schröter, M. Seibt, Early stages of iron precipitation in silicon. Phys. Status Solidi C 2, 1802–1806 (2005). https://doi.org/10.1002/pssc.200460507

    Article  CAS  Google Scholar 

  83. R. Khalil, V. Kveder, W. Schröter, M. Seibt, Electrical properties of clustered and precipitated iron in silicon. Solid State Phenom. 108–109, 109–114 (2005). https://doi.org/10.4028/www.scientific.net/SSP.108-109.10

  84. E.K. Evangelou, G.E. Giakoumakis, C.A. Dimitriadis, Deep levels in β-FeSi2/n-Si heterojunctions. Solid State Commun. 86, 309–312 (1993). https://doi.org/10.1016/0038-1098(93)90379-2

  85. B.K. Miremadi, S. Roy Morrison, Conductance along iron-doped silicon grain boundaries. J. Appl. Phys. 55, 3658–3663 (1984). https://doi.org/10.1063/1.332915

  86. M. Kittler, W. Seifert, M. Stemmer, J. Palm, Interaction of iron with a grain boundary in boron-doped multicrystalline silicon. J. Appl. Phys. 77, 3725–3728 (1995). https://doi.org/10.1063/1.358611

    Article  CAS  Google Scholar 

  87. C. Hässler, G. Pensl, M. Schulz, A. Voigt, H.P. Strunk, Grain boundaries in multicrystalline silicon. Phys. Status Solidi A 137, 463–484 (1993). https://doi.org/10.1002/pssa.2211370218

    Article  Google Scholar 

  88. W. Seifert, M. Kittler, J. Vanhellemont, EBIC study of recombination activity of oxygen precipitation related defects in Si. Mater. Sci. Eng. B 42, 260–264 (1996). https://doi.org/10.1016/S0921-5107(96)01718-7

  89. M. Trushin, O. Vyvenko, W. Seifert, G. Jia, M. Kittler, Iron-oxygen interaction in silicon: a combined XBIC/XRF-EBIC-DLTS study of precipitation and complex building. Physica B 404, 4645–4648 (2009). https://doi.org/10.1016/j.physb.2009.08.132

    Article  CAS  Google Scholar 

  90. A. Castaldini, D. Cavalcoli, A. Cavallini, S. Binetti, S. Pizzini, Electronic transitions at defect states in Cz p-type silicon. Appl. Phys. Lett. 86, 162109/1-3 (2005). https://doi.org/10.1063/1.1881788

  91. G. Zoth, W. Bergholz, A fast, preparation-free method to detect iron in silicon. J. Appl. Phys. 67, 6764–6771 (1990). https://doi.org/10.1063/1.345063

    Article  CAS  Google Scholar 

  92. D. Macdonald, J. Tan, T. Trupke, Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence. J. Appl. Phys. 103, 073710/1-7 (2008). https://doi.org/10.1063/1.2903895

  93. M.C. Schubert, H. Habenicht, W. Warta, Imaging of metastable defects in silicon. IEEE J. Photovolt. 1, 168–173 (2011). https://doi.org/10.1109/JPHOTOV.2011.2169942

    Article  Google Scholar 

  94. M.C. Schubert, M.J. Kerler, W. Warta, Influence of heterogeneous profiles in carrier density measurements with respect to iron concentration measurements in silicon. J. Appl. Phys. 105, 114903/1-6 (2009). https://doi.org/10.1063/1.3138805

  95. L.E. Mundt, M.C. Schubert, J. Schön, B. Michl, T. Niewelt, F. Schindler, W. Warta, Spatially resolved impurity identification via temperature- and injection-dependent photoluminescence imaging. IEEE J. Photovolt. 5, 1503–1509 (2015). https://doi.org/10.1109/JPHOTOV.2015.2447837

    Article  Google Scholar 

  96. D.H. Macdonald, L.J. Geerligs, A. Azzizi, Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping. J. Appl. Phys. 95, 1021–1028 (2004). https://doi.org/10.1063/1.1637136

    Article  CAS  Google Scholar 

  97. D. Walz, J.-P. Joly, G. Kamarinos, On the recombination behaviour of iron in moderately boron-doped p-type silicon. Appl. Phys. A 62, 345–353 (1996). https://doi.org/10.1007/BF01594232

    Article  Google Scholar 

  98. M. Kittler, W. Seifert, K. Schmalz, K. Tittelbach-Helmrich, Comparison of EBIC and DLTS measurements on boron-doped CZ silicon contaminated with iron. Phys. Status Solidi A 96, K133–K137 (1986). https://doi.org/10.1002/pssa.2910960247

    Article  CAS  Google Scholar 

  99. I. Rapoport, P. Taylor, J. Kearns, D.K. Schroder, Two-side surface photovoltage studies for implanted iron diffusion in silicon during rapid thermal anneal. J. Appl. Phys. 107, 013518/1-6 (2010). https://doi.org/10.1063/1.3275045

  100. E.H. Dahl, V. Osinniy, K. Friestad, A.-K. Søiland, Y. Safir, W. Skorupa, R. Tronstad, A. Nylandsted Larsen, Assessing the role of iron-acceptor pairs in solar grade multicrystalline silicon wafers from the metallurgical route. Phys. Status Solidi C 9, 2017–2022 (2012). https://doi.org/10.1002/pssc.201200258

    Article  CAS  Google Scholar 

  101. T. Mchedlidze, J. Weber, Radial distribution of iron in silicon crystals grown by Czochralski method from contaminated feedstock. Phys. Status Solidi RRL 8, 228–230 (2014). https://doi.org/10.1002/pssr.201308327

    Article  CAS  Google Scholar 

  102. K. Knobloch, W. Seifert, M. Kittler, Application of scanning deep level transient spectroscopy for characterisation of multicrystalline silicon. Mater. Sci. Eng. B 42, 254–259 (1996). https://doi.org/10.1016/S0921-5107(96)01684-4

    Article  Google Scholar 

  103. Y. Tokuda, T. Namizaki, T. Murase, T. Hasegawa, H. Shiraki, Deep-level transient spectroscopy detection of iron in hydrogenated p+ silicon. Jpn. J. Appl. Phys. 40, L533–L535 (2001). https://doi.org/10.1143/JJAP.40.L533

    Article  CAS  Google Scholar 

  104. W. Kwapil, J. Schön, F. Schindler, W. Warta, M.C. Schubert, Impact of iron precipitates on carrier lifetime in as-grown and phosporus-gettered multicrystalline silicon wafers in model and experiment. IEEE J. Photovolt. 4, 791–798 (2014). https://doi.org/10.1109/JPHOTOV.2014.2304355

    Article  Google Scholar 

  105. P. Gundel, M.C. Schubert, F.D. Heinz, W. Kwapil, W. Warta, G. Martinez-Criado, M. Reiche, E.R. Weber, Impact of stress on the recombination at metal precipitates in silicon. J. Appl. Phys. 108, 103707/1-5 (2010). https://doi.org/10.1063/1.3511749

  106. A.A. Istratov, E.R. Weber, Physics of copper in silicon. J. Electrochem. Soc. 149, G21–G30 (2002). https://doi.org/10.1149/1.1421348

    Article  CAS  Google Scholar 

  107. M. Seibt, M. Griess, A.A. Istratov, H. Hedemann, A. Sattler, W. Schröter, Formation and precipitation of copper silicide precipitates in silicon. Phys. Status Solidi A 166, 171–182 (1998). https://doi.org/10.1002/(sici)1521-396x(199803)166:1<171::aid-pssa171>3.0.c);2-2

    Google Scholar 

  108. U. Wahl, A. Vantomme, G. Langouche, J.P. Correia, ISOLDE Collaboration, Lattice location and stability of ion implanted Cu in Si. Phys. Rev. Lett. 84, 1495–1498 (2000). https://doi.org/10.1103/PhysRevLett.84.1495

    Article  CAS  Google Scholar 

  109. U. Wahl, J.G. Correia, J.C. Soares, the ISOLDE Collaboration, Lattice location and stability of implanted Cu in Ge. Physica B 340-342, 799–802 (2003). https://doi.org/10.1016/j.physb.2003.09.216

    Article  CAS  Google Scholar 

  110. U. Wahl, A. Vantomme, G. Langouche, J.P. Araújo, L. Peralta, J.G. Correia, Lattice location of implanted Cu in highly doped Si. Appl. Phys. Lett. 77, 2142–2144 (2000). https://doi.org/10.1063/1.1314876

    Article  CAS  Google Scholar 

  111. R. Keller, M. Deicher, W. Pfeiffer, H. Skudlik, D. Steiner, Th. Wichert, Copper in silicon. Phys. Rev. Lett. 65, 2023–2026 (1990). https://doi.org/10.1103/PhysRevLett.65.2023

  112. A.M. Frens, M.T. Bennebroek, J. Schmidt, W.M. Chen, B. Monemar, Zero-field optical detection of magnetic resonance on a metastable sulfur-pair-related defect in silicon: evidence for a Cu constituent. Phys. Rev. B 46, 12316–12322 (1992). https://doi.org/10.1103/PhysRevB.46.12316

    Article  CAS  Google Scholar 

  113. P.N. Hai, T. Gregorkiewicz, C.A.J. Ammerlaan, D.T. Don, Copper-related defects in silicon: electron-paramagnetic-resonance identification. Phys. Rev. B 56, 4620–4625 (1997). https://doi.org/10.1103/PhysRevB.56.4620

    Article  CAS  Google Scholar 

  114. W.C. Dash, Copper precipitation on dislocations in silicon. J. Appl. Phys. 27, 1193–1195 (1956). https://doi.org/10.1063/1.1722229

    Article  CAS  Google Scholar 

  115. G.H. Schwuttke, Study of copper precipitation behavior in silicon single crystals. J. Electrochem. Soc. 108, 163–167 (1961). https://doi.org/10.1149/1.2428034

    Article  CAS  Google Scholar 

  116. L. Fiermans, J. Vennik, The precipitation behaviour of copper in silicon single crystals. Phys. Status Solidi 12, 277–289 (1965). https://doi.org/10.1002/pssb.19650120125

    Article  CAS  Google Scholar 

  117. E. Nes, G. Lunde, Copper precipitate colonies in silicon. J. Appl. Phys. 43, 1835–1837 (1972). https://doi.org/10.1063/1.1661405

    Article  CAS  Google Scholar 

  118. S.M. Hu, M.R. Poponiak, Habit and morphology of copper precipitates in silicon. J. Appl. Phys. 43, 2067–2074 (1972). https://doi.org/10.1063/1.1661455

    Article  CAS  Google Scholar 

  119. E. Nes, J. Solberg, In situ transmission electron microscope investigation of the annealing of copper colonies in silicon. J. Appl. Phys. 44, 486–487 (1973). https://doi.org/10.1063/1.1661910

    Article  CAS  Google Scholar 

  120. E. Nes, J.K. Solberg, The dragging of precipitate particles by climbing dislocations in silicon. J. Appl. Phys. 44, 488–489 (1973). https://doi.org/10.1063/1.1661911

    Article  CAS  Google Scholar 

  121. G. Das, Precipitation of copper in silicon. J. Appl. Phys. 44, 4459–4467 (1973). https://doi.org/10.1063/1.1661982

    Article  CAS  Google Scholar 

  122. E. Nes, J. Washburn, Transmission electron microscope investigation of the growth of copper precipitate colonies in silicon. J. Appl. Phys. 44, 3682–3688 (1973). https://doi.org/10.1063/1.1662820

    Article  CAS  Google Scholar 

  123. J.K. Solberg, The crystal structure of η-Cu3Si precipitates in silicon. Acta Cryst. A34, 684–698 (1978). https://doi.org/10.1107/S0567739478001448

  124. Y. Chikaura, K. Kishimoto, Extinction X-ray topography images of copper precipitates in silicon single crystals. Jpn. J. Appl. Phys. 19, L5–L8 (1980). https://doi.org/10.1143/JJAP.19.L5

    Article  CAS  Google Scholar 

  125. W. Wijaranakula, S.S. Kim, Precipitation of 3d transition metal silicides in Czochralski silicon crystals. J. Appl. Phys. 76, 6017–6019 (1994). https://doi.org/10.1063/1.358355

    Article  CAS  Google Scholar 

  126. M. Seibt, V. Kveder, W. Schröter, O. Voß, Structural and electrical properties of metal impurities at dislocations in silicon. Phys. Status Solidi A 202, 911–920 (2005). https://doi.org/10.1002/pssa.20046051

    Article  CAS  Google Scholar 

  127. W.C. Dash, Generation of prismatic dislocation loops in silicon crystals. Phys. Rev. Lett. 1, 400–402 (1958). https://doi.org/10.1103/PhysRevLett.1.400

    Article  CAS  Google Scholar 

  128. T. Yamauchi, Y. Tsumori, T. Nakashizu, H. Esaka, S. Takao, S. Shinoyama, Application of copper-decoration method to characterize as-grown Czochralski-silicon. Jpn. J. Appl. Phys. 31, L439–L442 (1992). https://doi.org/10.1143/JJAP.31.L439

    Article  CAS  Google Scholar 

  129. J.-S. Shin, I.W. Lyo, Influence of Cu-decoration to individual crystal originated pits on Si wafer. Jpn. J. Appl. Phys. 42, 4187–4192 (2003). https://doi.org/10.1143/JJAP.42.4187

    Article  CAS  Google Scholar 

  130. M. Itsumi, Y. Omura, K. Imai, T. Ueki, H. Akiya, M. Tomita, M. Yamawaki, Copper decoration followed by TEM observation identifying defects in the buried oxides of SOI substrates. J. Electrochem. Soc. 143, 2357–2361 (1996). https://doi.org/10.1149/1.1837007

    Article  CAS  Google Scholar 

  131. E. Nes, The mechanism of repeated precipitation on dislocations. Acta Metall. 22, 81–87 (1974). https://doi.org/10.1016/0001-6160(74)90127-8

    Article  CAS  Google Scholar 

  132. J.K. Solberg, E. Nes, On the micromechanisms of repeated precipitation on edge dislocations. J. Mater. Sci. 13, 2233–2340 (1978). https://doi.org/10.1007/BF00541679

    Article  CAS  Google Scholar 

  133. M. Elkajbaji, J. Dessus, J. Thibault, Structure of copper precipitates in a symmetrical silicon tilt bicrystal: high-resolution electron microscopy and energy-dispersive X-ray analysis. Philos. Mag. A 66, 873–888 (1992). https://doi.org/10.1080/01418619208247996

    Article  CAS  Google Scholar 

  134. S.A. McHugo, Release of metal impurities from structural defects in polycrystalline silicon. Appl. Phys. Lett. 71, 1984–1986 (1997). https://doi.org/10.1063/1.119762

    Article  CAS  Google Scholar 

  135. T. Buonassisi, M.A. Marcus, A.A. Istratov, M. Heuer, T.F. Ciszek, B. Lai, Z. Cai, E.R. Weber, Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material. J. Appl. Phys. 97, 063503/1-9 (2005). https://doi.org/10.1063/1.1827913

  136. H. Gottschalk, Precipitation of copper silicide on glide dislocations in silicon at low temperature. Phys. Status Solidi A 137, 447–461 (1993). https://doi.org/10.1002/pssa.2211370217

    Article  CAS  Google Scholar 

  137. B. Shen, T. Sekiguchi, R. Zhang, Y. Shi, H. Shi, K. Yang, Y. Zheng, K. Sumino, Precipitation of Cu and Fe in dislocated Floating-Zone-grown silicon. Jpn. J. Appl. Phys. 35, 3301–3305 (1996). https://doi.org/10.1143/JJAP.35.3301

    Article  CAS  Google Scholar 

  138. B. Shen, R. Zhang, Y. Shi, Y.D. Zheng, T. Sekiguchi, K. Sumino, Precipitation of Cu and Fe on Frank-type partial dislocations in Czochralski-grown silicon. Appl. Phys. Lett. 68, 214–216 (1996). https://doi.org/10.1063/1.116464

    Article  CAS  Google Scholar 

  139. B. Shen, T. Sekiguchi, J. Jablonski, K. Sumino, Gettering of copper by bulk stacking faults and punched-out dislocations in Czochralski-grown silicon. J. Appl. Phys. 76, 4540–4546 (1994). https://doi.org/10.1063/1.357285

    Article  CAS  Google Scholar 

  140. W.K. Tice, T.Y. Tan, Nucleation of CuSi precipitate colonies in oxygen-rich silicon. Appl. Phys. Lett. 28, 564–565 (1976). https://doi.org/10.1063/1.88825

    Article  CAS  Google Scholar 

  141. A. Bazzali, G. Borionetti, R. Orizio, D. Gambaro, R. Falster, Oxygen precipitate precursors and size threshold for the preferential nucleation for copper and nickel precipitation in silicon: the detection of copper and nickel contamination by minority carrier lifetime methods. Mater. Sci. Eng. B 36, 85–90 (1996). https://doi.org/10.1016/0921-5107(95)01298-2

    Article  Google Scholar 

  142. J. Xu, N. Wang, D. Yang, Influence of oxygen precipitation on copper precipitation in Czochralski silicon. J. Appl. Phys. 111, 094907/1-4 (2012). https://doi.org/10.1063/1.4705421

  143. M. Seibt, K. Graff, Characterization of haze-forming precipitates in silicon. J. Appl. Phys. 63, 4444–4449 (1988). https://doi.org/10.1063/1.340164

    Article  CAS  Google Scholar 

  144. S. Sadamitsu, S. Sumita, N. Fujino, T. Shiraiwa, TEM observation of defects induced by Cu contamination on Si(100) surface. Jpn. J. Appl. Phys. 27, L1819–L1821 (1988). https://doi.org/10.1143/JJAP.27.L1819

    Article  CAS  Google Scholar 

  145. B. Shen, J. Jablonski, T. Sekiguchi, K. Sumino, Influences of Cu and Fe impurities on oxygen precipitation in Czochralski-grown silicon. Jpn. J. Appl. Phys. 35, 4187–4194 (1996). https://doi.org/10.1143/JJAP.35.4187

    Article  CAS  Google Scholar 

  146. Y. Ohno, K. Inoue, K. Kutsukake, M. Deura, T. Ohsawa, I. Yonenaga, H. Yoshida, S. Takeda, R. Taniguchi, H. Otubo, S.R. Nishitani, N. Ebisawa, Y. Shimizu, H. Takamizawa, K. Inoue, Y. Nagai, Nanoscopic mechanism of Cu precipitation at small-angle tilt boundaries in Si. Phys. Rev. B 91, 235315/1-5 (2015). https://doi.org/10.1103/physrevb.91.235315

  147. G. Kissinger, H. Grimmeiss, Difficulties in doping SiGe alloys with transition metal point defects. Phys. Status Solidi A 145, K5–K9 (1994). https://doi.org/10.1002/pssa.2211540249

    Article  CAS  Google Scholar 

  148. R. Gleichmann, Precipitation of copper in transmutation doped silicon. Mat. Res. Soc. Symp. Proc. 25, 287–292 (1984). https://doi.org/10.1002/crat.2170180303

    Article  CAS  Google Scholar 

  149. Z. Xi, D. Yang, J. Xu, Y. Ji, D. Que, H.J. Moeller, Effect of intrinsic point defects on copper precipitation in large-diameter Czochralski silicon. Appl. Phys. Lett. 83, 3048–3050 (2003). https://doi.org/10.1063/1.1617377

    Article  CAS  Google Scholar 

  150. Z. Xi, J. Chen, D. Yang, A. Lawerenz, H.J. Moeller, Copper precipitation in large-diameter Czochralski silicon. J. Appl. Phys. 97, 094909/1-4 (2005). https://doi.org/10.1063/1.1875740

  151. W. Wang, D. Yang, X. Ma, D. Que, Effect of silicon interstitials on Cu precipitation in n-type Czochralski silicon. J. Appl. Phys. 103, 093534/1-4 (2008). https://doi.org/10.1063/1.1.2908215

  152. S.A. McHugo, C. Flink, Thermal stability of copper precipitates in silicon. Appl. Phys. Lett. 77, 3598–3600 (2000). https://doi.org/10.1063/1.1328769

    Article  CAS  Google Scholar 

  153. S.A. McHugo, A. Mohammed, A.C. Thompson, B. Lai, Z. Cai, Copper precipitates in silicon: Precipitation, dissolution, and chemical state. J. Appl. Phys. 91, 6396–6405 (2002). https://doi.org/10.1063/1.1471944

    Article  CAS  Google Scholar 

  154. M. Heuer, T. Buonassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, A.M. Minor, E.R. Weber, Transition metal interaction and Ni-Fe-Cu-Si phases in silicon. J. Appl. Phys. 101, 123510/1-6. (2007). https://doi.org/10.1063/1.2748346

  155. M. El Kajbaji, J. Thibault, Platelet copper precipitates in silicon: a high-resolution electron microscopy study. Philos. Mag. Lett. 71, 335–339 (1995). https://doi.org/10.1080/09500839508241016

    Article  Google Scholar 

  156. W. Schröter, V. Kveder, M. Seibt, H. Ewe, H. Hedemann, F. Riedel, A. Sattler, Atomic structure and electronic states of nickel and copper silicides in silicon. Mater. Sci. Eng. B 72, 80–86 (2000). https://doi.org/10.1016/S0921-5107(99)00499-7

  157. M.B. Shabani, T. Yoshimi, H. Abe, Low-temperature out-diffusion of Cu from silicon wafers. J. Electrochem. Soc. 143, 2025–2029 (1996). https://doi.org/10.1149/1.1836943

    Article  CAS  Google Scholar 

  158. C. Flink, H. Feick, S.A. McHugo, W. Seifert, H. Hieslmair, T. Heiser, A.A. Istratov, E.R. Weber, Out-diffusion and precipitation of copper in silicon: an electrostatic model. Phys. Rev. Lett. 23, 4900–4903 (2000). https://doi.org/10.1103/PhysRevLett.23.4900

    Article  Google Scholar 

  159. H.-W. Guo, S.T. Dunham, Accurate modeling of copper precipitation kinetics including Fermi level dependence. Appl. Phys. Lett. 89, 182106/1-3 (2006). https://doi.org/10.1063/1.2374689

  160. Y. Ohkubo, K. Matsumoto, K. Nagai, Acceleration of Cu surface precipitation from bulk by adsorbed organic molecules. Jpn. J. Appl. Phys. 44, 3793–3797 (2005). https://doi.org/10.1143/JJAP.44.3793

    Article  CAS  Google Scholar 

  161. M. Seibt, H. Hedemann, A.A. Istratov, F. Riedel, A. Sattler, W. Schröter, Structural and electrical properties of metal silicide precipitates in silicon. Phys. Status Solidi A 171, 301–310 (1999). https://doi.org/10.1002/(sici)1521-396x(199901)171:1<301::aid-pssa301>3.0.co;2-p

    Google Scholar 

  162. C.B. Collins, R.O. Carlson, Properties of silicon doped with iron and copper. Phys. Rev. 108, 1409–1414 (1957). https://doi.org/10.1103/PhysRev.108.1409

    Article  CAS  Google Scholar 

  163. A.A. Lebedev, M.M. Akhmedova, Photoconductivity of copper-doped silicon. Sov. Phys. Semicond. 10, 1130–1132 (1976)

    Google Scholar 

  164. C.S. Chen, J.C. Corelli, Spectroscopy study of copper impurities in silicon. J. Appl. Phys. 44, 5622–5623 (1973). https://doi.org/10.1063/1.1662209

    Article  CAS  Google Scholar 

  165. N. Tōyama, Copper impurity levels in silicon. Solid-State Electron 26, 37–46 (1983). https://doi.org/10.1016/0038-1101(83)90159-4

    Article  Google Scholar 

  166. N. Tōyama, T. Otsuji, Strain-induced level in copper-doped silicon. J. Appl. Phys. 57, 4623–4625 (1985). https://doi.org/10.1063/1.335371

    Article  Google Scholar 

  167. H. Lemke, Properties of copper donor levels in silicon. Phys. Status Solidi A 1, 283–286 (1970). https://doi.org/10.1002/pssa.19700010211

    Article  CAS  Google Scholar 

  168. M.M. Akhmedova, L.S. Berman, L.S. Kostina, A.A. Lebedev, Investigation of the parameters of copper levels in silicon by capacitance methods. Sov. Phys. Semicond. 10, 1400–1401 (1976)

    Google Scholar 

  169. S.J. Pearton, A.J. Tavendale, The electrical properties of deep copper- and nickel-related centers in silicon. J. Appl. Phys. 54, 1375–1379 (1983). https://doi.org/10.1063/1.332160

    Article  CAS  Google Scholar 

  170. H. Lemke, Störstellenreaktionen bei Cu-dotierten Siliziumkristallen. Phys. Status Solidi A 95, 665–677 (1986). https://doi.org/10.1002/pssa.2210950237

    Article  CAS  Google Scholar 

  171. S.D. Brotherton, J.R. Ayres, A. Gill, H.W. van Kesteren, F.J.A.M. Greidanus, Deep levels of copper in silicon. J. Appl. Phys. 62, 1826–1832 (1987). https://doi.org/10.1063/1.339564

    Article  CAS  Google Scholar 

  172. A. Mesli, T. Heiser, Defect reactions in copper-diffused and quenched p-type silicon. Phys. Rev. B 45, 11632–11641 (1992). https://doi.org/10.1103/PhysRevB.45.11632

    Article  CAS  Google Scholar 

  173. S. Koveshnikov, Y. Pan, H. Mollenkopf, Investigation of electronic states in copper doped p-type silicon. Electrochem. Soc. Proc. 96(13), 473–479 (1996)

    Google Scholar 

  174. A.A. Istratov, H. Hieslmair, C. Flink, T. Heiser, E.R. Weber, Interstitial copper-related center in n-type silicon. Appl. Phys. Lett. 71, 2349–2351 (1997). https://doi.org/10.1063/1.120026

    Article  CAS  Google Scholar 

  175. S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, E.R. Weber, Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors. Phys. Rev. B 61, 10361–10365 (2000). https://doi.org/10.1103/PhysRevB61.10361

    Article  CAS  Google Scholar 

  176. E.R. Weber, A.A. Istratov, Electrical properties and recombination activity of copper, nickel and cobalt in silicon. Appl. Phys. A 66, 123–136 (1998). https://doi.org/10.1007/s003390050649

    Article  Google Scholar 

  177. S. Knack, Copper-related defects in silicon. Mater. Sci. Semicond. Process. 7, 125–141 (2004). https://doi.org/10.1016/j.mssp.2004.06.002

    Article  CAS  Google Scholar 

  178. N.S. Minaev, A.V. Mudryĭ, V.D. Tkachev, Radiative recombination at thermal defects in silicon. Sov. Phys. Semicond. 13, 233–234 (1979)

    Google Scholar 

  179. J. Weber, H. Bauch, R. Sauer, Optical properties of copper in silicon: excitons bound to isoelectronic copper pairs. Phys. Rev. B 25, 7688–7699 (1982). https://doi.org/10.1103/PhysRevB.25.7688

    Article  CAS  Google Scholar 

  180. H.B. Erzgräber, K. Schmalz, Correlation between the Cu-related luminescent center and a deep level in silicon. J. Appl. Phys. 78, 4066–4068 (1995). https://doi.org/10.1063/1.359863

    Article  Google Scholar 

  181. M. Nakamura, Dissociation of the 1.014 eV photoluminescence copper center in silicon crystal. Appl. Phys. Lett. 73, 3896–3898 (1998). https://doi.org/10.1063/1.122928

    Article  CAS  Google Scholar 

  182. M. Nakamura, Thermal equilibrium and stability of copper complexes in silicon crystal. Appl. Phys. Lett. 76, 2089–2091 (2000). https://doi.org/10.1063/1.126264

    Article  CAS  Google Scholar 

  183. M. Nakamura, Formation of the photoluminescence Cu center on in-diffusion and out-diffusion of Cu in dilute Cu-contaminated silicon crystals. J. Appl. Phys. 92, 6625–6629 (2002). https://doi.org/10.1063/1.1521515

    Article  CAS  Google Scholar 

  184. M. Nakamura, H. Ohno, S. Murakami, Formation of the 1.014 eV photoluminescence Cu center in Cu-implanted silicon crystals and the center’s model. Jpn. J. Appl. Phys. 43, L1466–L1468 (2004). https://doi.org/10.1143/JJAP.43.L1466

    Article  Google Scholar 

  185. A.A. Istratov, H. Hieslmair, T. Heiser, C. Flink, E.R. Weber, The dissociation energy and the charge state of a copper-pair center in silicon. Appl. Phys. Lett. 72, 474–476 (1998). https://doi.org/10.1063/1.120790

    Article  CAS  Google Scholar 

  186. M. Nakamura, S. Murakami, N.J. Kawai, S. Saito, H. Arie, Diffusion-temperature-dependent formation of Cu centers in Cu-saturated silicon crystals studied by photoluminescence and deep-level transient spectroscopy. Jpn. J. Appl. Phys. 47, 4398–4402 (2008). https://doi.org/10.1143/JJAP.47.4398

    Article  CAS  Google Scholar 

  187. M.L.W. Thewalt, M. Steger, A. Yang, N. Stavrias, M. Cardona, H. Riemann, N.V. Abrosimov, M.F. Churbanov, A.V. Gusev, A.D. Bulanov, I.D. Kovalev, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.-J. Pohl, J.W. Ager III, E.E. Haller, Can highly enriched 28Si reveal new things about old defects? Physica B 401–402, 587–592 (2007). https://doi.org/10.1016/j.physb.2007.09.028

    Article  CAS  Google Scholar 

  188. M. Steger, A. Yang, N. Stavrias, M.L.W. Thewalt, H. Riemann, N.V. Abrosimov, M.F. Churbanov, A.V. Gusev, A.D. Bulanov, I.D. Kovalev, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.-J. Pohl, Reduction of the linewidths of deep luminescence centers in 28Si reveals fingerprints of the isotope constituents. Phys. Rev. Lett. 100, 177402/1-4 (2008). https://doi.org/10.1103/physrevlett.100.177402

  189. M. Nakamura, S. Murakami, N.J. Kawai, S. Saito, K. Matsukawa, H. Arie, Compositional transformation between Cu centers by annealing in Cu-diffused silicon crystals studied with deep-level transient spectroscopy and photoluminescence. Jpn. J. Appl. Phys. 48, 082302/1-5 (2009). https://doi.org/10.1143/jjap.48.082302

  190. M. Nakamura, S. Murakami, Depth progression of dissociation reaction of the 1.014-eV photoluminescence copper center in copper-diffused silicon crystal measured by deep-level transient spectroscopy. Appl. Phys. Lett. 98, 141909/1-3 (2011). https://doi.org/10.1063/1.3575574

  191. M. Nakamura, S. Murakami, Deep-level transient spectroscopy and photoluminescence measurements of dissociation energy of the 1.014-eV copper center in copper-diffused silicon crystal. J. Appl. Phys. 111, 073512/1-6 (2012). https://doi.org/10.1063/1.3699366

  192. M. Nakamura, S. Murakami, H. Udono, Transformation reactions of copper centers in the space-charge region of a copper-diffused silicon crystal measured by deep-level transient spectroscopy. J. Appl. Phys. 112, 063530/1-5 (2012). https://doi.org/10.1063/1.4754862

  193. M. Nakamura, S. Murakami, H. Udono, Energy level(s) of the dissociation product of the 1.014-eV photoluminescence copper center in n-type silicon determined by photoluminescence and deep-level transient spectroscopy. J. Appl. Phys. 114, 033508/1-5 (2013). https://doi.org/10.1063/1.4813878

  194. K. Shirai, H. Yamaguchi, A. Yanase, H. Katayama-Yoshida, A new structure of Cu complex in Si and its photoluminescence. J. Phys. Condens. Matter. 21, 064249/1-7 (2009). https://doi.org/10.1088/0953-8984/21/6/064249

  195. A. Carvalho, D.J. Backlund, S.K. Estreicher. Four-copper complexes in Si and the Cu-related photoluminescence defect: a first-principles study. Phys. Rev. B 84, 155322/1-8 (2011). https://doi.org/10.1103/physrevb.84.155322

  196. A. Usami, Y. Tokuda, Effect of oxygen and copper on the defect cluster in neutron-irradiated p-type silicon. J. Appl. Phys. 45, 2823–2831 (1974). https://doi.org/10.1063/1.1663686

    Article  CAS  Google Scholar 

  197. S. Tamulevicius, B.G. Svensson, M.O. Aboefotoh, A. Hallén, Interaction between copper and point defects in proton-irradiated silicon. J. Appl. Phys. 71, 4212–4216 (1992). https://doi.org/10.1063/1.350800

    Article  CAS  Google Scholar 

  198. N. Yarikin, J. Weber, Copper-related deep-level centers in irradiated p-type silicon. Phys. Rev. B 83, 125207/1-8 (2011). https://doi.org/10.1103/physrevb.83.125207

  199. W. Wang, D. Yang, X. Yu, X. Ma, D. Que, Effect of point defects on copper-related deep levels in p-type Czochralski silicon. J. Appl. Phys. 102, 073521/1-4 (2007). https://doi.org/10.1063/1.2786126

  200. S. Knack, J. Weber, S.K. Estreicher, Defect reactions of copper in silicon. Electrochem. Soc. Proc. 20, 290–298 (2002)

    Google Scholar 

  201. S. Knack, J. Weber, H. Lemke, H. Riemann, Copper-hydrogen complexes in silicon. Phys. Rev. B 65, 165203/1-8 (2002). https://doi.org/10.1103/physrevb.65.165203

  202. J. Kaniewski, M. Kaniewska, L. Ornoch, T. Sekiguchi, K. Sumino, Hydrogenation of copper related deep states in n-type Si containing extended defects. Mater. Sci. Forum 258–263, 319–324 (1997). https://doi.org/10.4028/www.scientific.net/MSF.258-263.319

  203. K. Kurita, T. Shingyouji, Room temperature annealing behavior of copper-related deep levels in p-type floating zone silicon wafers. Jpn. J. Appl. Phys. 40, 1167–1171 (2001). https://doi.org/10.1143/JJAP.40.1167

    Article  CAS  Google Scholar 

  204. E. Simoen, P. Clauws, M. Lamon, J. Vennik, Signature and capture cross section of copper-related hole traps in p-type high-purity germanium. Semicond. Sci. Technol. 1, 53–57 (1986). https://doi.org/10.1088/0268-1242/1/007

    Article  CAS  Google Scholar 

  205. P. Clauws, G. Huylebroeck, E. Simoen, P. Vermaercke, F. De Smet, J. Vennik, DLTS of the third acceptor level of substitutional copper in germanium. Semicond. Sci. Technol. 4, 910–914 (1989). https://doi.org/10.1088/0268-1242/4/11/003

    Article  CAS  Google Scholar 

  206. R.A. Paramonova, A.V. Rzhanov, Sov. Phys. Solid State 4, 1335–1338 (1963)

    Google Scholar 

  207. Y. Kamiura, F. Hashimoto, Copper-related deep levels and their annealing kinetics in germanium. Jpn. J. App. Phys. 28, 763–769 (1989). https://doi.org/10.1143/JJAP.28.763

    Article  CAS  Google Scholar 

  208. R. Gleichmann, H. Blumtritt, J. Heydenreich, New morphological types of CuSi precipitates in silicon and their electrical effects. Phys. Status Solidi A 78, 527–538 (1983). https://doi.org/10.1002/pssa.2210780219

    Article  CAS  Google Scholar 

  209. A. Correia, D. Ballutaud, A. Boutry-Forveille, J.L. Maurice, Effects of copper and oxygen precipitation during thermal oxidation of silicon: an electron-beam-induced current study. J. Appl. Phys. 78, 6543–6553 (1995). https://doi.org/10.1063/1.360475

    Article  CAS  Google Scholar 

  210. L. Zhong, F. Shimura, Dependence of lifetime on surface concentration of copper and iron in silicon wafers. Appl. Phys. Lett. 61, 1078–1080 (1992). https://doi.org/10.1063/1.107696

    Article  Google Scholar 

  211. G.A. Adegboyega, A. Poggi, Copper impurities and their annealing behaviour in FZ silicon. Phys. Status Solidi A 143, 373–377 (1994). https://doi.org/10.1002/pssa.2211430222

    Article  CAS  Google Scholar 

  212. A.L.P. Rotondaro, T.Q. Hurd, A. Kaniava, J. Vanhellemont, E. Simoen, M.M. Heyns, C. Claeys, G. Brown, Impact of Fe and Cu contamination on the minority carrier lifetime of silicon substrates. J. Electrochem. Soc. 143, 3014–3019 (1996). https://doi.org/10.1149/1.1837141

    Article  CAS  Google Scholar 

  213. A.A. Istratov, C. Flink, H. Hieslmair, T. Heiser, E.R. Weber, Influence of interstitial copper on diffusion length and lifetime of minority carriers in p-type silicon. Appl. Phys. Lett. 71, 2121–2123 (1997). https://doi.org/10.1063/1.119355

    Article  CAS  Google Scholar 

  214. J.L. Benton, T. Boone, D.C. Jacobson, P.J. Silverman, J.M. Rosamilia, C.S. Rafferty, S. Weinzierl, B. Vu, Electrical properties of cobalt and copper contamination in processed silicon. J. Electrochem. Soc. 148, G326–G329 (2001). https://doi.org/10.1149/1.1370970

    Article  CAS  Google Scholar 

  215. R. Sachdeva, A.A. Istratov, E.R. Weber, Recombination activity of copper in silicon. Appl. Phys. Lett. 79, 2937–2939 (2001). https://doi.org/10.1063/1.1415350

    Article  CAS  Google Scholar 

  216. M.L. Polignano, D. Caputo, C. Carpanese, G. Salvà, L. Vanzetti, Low temperature drive-in of surface-deposited copper in silicon wafers. Eur. Phys. J. Appl. Phys. 27, 435–438 (2004). https://doi.org/10.1051/epjap:2004138

    Article  CAS  Google Scholar 

  217. W. Wang, D. Yang, X. Ma, Y. Zeng, D. Que, Effect of annealing atmosphere on the recombination activity of copper precipitates formed by rapid thermal process in conventional and nitrogen-doped Czochralski silicon wafers. J. Appl. Phys. 103, 014912/1-5 (2008). https://doi.org/10.1063/1.2830859

  218. A.A. Istratov, H. Hedemann, M. Seibt, P.F. Vyvenko, W. Schröter, C. Flink, T. Heiser, H. Hieslmair, E.R. Weber, Electrical and recombination properties of precipitated and interstitial copper in silicon. Electrochem. Soc. Proc. 98910, 948–966 (1998)

    Google Scholar 

  219. A.A. Istratov, H. Hedemann, M. Seibt, O.F. Vyvenko, W. Schröter, T. Heiser, C. Flink, H. Hieslmair, E.R. Weber, Electrical and recombination properties of copper-silicide precipitates in silicon. J. Electrochem. Soc. 145, 3889–3898 (1998). https://doi.org/10.1149/1.1838889

    Article  CAS  Google Scholar 

  220. C. Flink, H. Feick, S.A. McHugo, A. Mohammed, W. Seifert, H. Hieslmair, T. Heiser, A.A. Istratov, E.R. Weber, Formation of copper precipitates in silicon. Physica B 273–274, 437–440 (1999). https://doi.org/10.1016/S0921-4526(99)00499-8

    Article  Google Scholar 

  221. P.S. Plekhanov, T.Y. Tan, Schottky effect model of electrical activity of metallic precipitates in silicon. Appl. Phys. Lett. 76, 3777–3779 (2000). https://doi.org/10.1063/1.126778

    Article  CAS  Google Scholar 

  222. H. Savin, M. Yli-Koski, A. Haarahiltunen, Role of copper in light induced minority-carrier lifetime degradation of silicon. Appl. Phys. Lett. 95, 152111/1-3 (2009). https://doi.org/10.1063/1.3250161

  223. J. Lindroos, M. Yli-Koski, A. Haarahiltunen, M.C. Schubert, H. Savin, Light-induced degradation in copper-contaminated gallium-doped silicon. Phys. Status Solidi RRL 7, 262–264 (2013). https://doi.org/10.1002/pssr.201307011

    Article  CAS  Google Scholar 

  224. A. Inglese, A. Focareta, F. Schindler, J. Schön, J. Lindroos, M.C. Schubert, H. Savin, Light-induced degradation in multicrystalline silicon: the role of copper. Energy Proc. 92, 808–814 (2016). https://doi.org/10.1016/j.egypro.2016.07.073

    Article  CAS  Google Scholar 

  225. P.R. Wilshaw, T.S. Fell, M.D. Coteau, EBIC contrast of defects in semiconductors. J. de Physique IV, C6, C6-3/C6-14 (1991)

    Google Scholar 

  226. M. Saritas, A.R. Peaker, Deep states associated with oxidation induced stacking faults in RTA p-type silicon before and after copper diffusion. Solid-State Electron. 38, 1025–1034 (1995). https://doi.org/10.1016/0038-1101(95)98671-O

  227. A. Broniatowski, Multicarrier trapping by copper microprecipitates in silicon. Phys. Rev. Lett. 62, 3074–3077 (1989). https://doi.org/10.1103/PhysRevLett.62.3074

    Article  CAS  Google Scholar 

  228. J.F. Hamet, R. Abelaoui, G. Nouet, G. Allais, Precipitation at grain boundaries in silicon. Mater. Sci. Eng. B 4, 143–145 (1989). https://doi.org/10.1016/0921-S107(89)90236-6

    Article  Google Scholar 

  229. A. Broniatowski, C. Haut, The electronic properties of copper-decorated twinned boundaries in silicon. Philos. Mag. Lett. 62, 407–415 (1990). https://doi.org/10.1080/09500839008215543

    Article  CAS  Google Scholar 

  230. J.F. Hamet, R. Abdelaoui, G. Nouet, Effects of copper precipitation in Σ = 25 silicon bicrystals by deep-level transient spectroscopy. J. Appl. Phys. 68, 638–645 (1990). https://doi.org/10.1063/1.346792

    Article  CAS  Google Scholar 

  231. R. Rizk, X. Portier, G. Allais, G. Nouet, Electrical and structural properties of copper and nickel precipitates in a Σ = 25 silicon bicrystal. J. Appl. Phys. 76, 952–958 (1994). https://doi.org/10.1063/1.357773

    Article  CAS  Google Scholar 

  232. Y. Ohno, K. Kutsukake, M. Deura, I. Yonenaga, Y. Shimizu, N. Ebisawa, K. Inoue, Y. Nagai, H. Yoshida, S. Takeda. Recombination activity of nickel, copper, and oxygen atoms segregating at grain boundaries in mono-like silicon crystals. Appl. Phys. Lett. 109, 142105/1-4 (2016). https://doi.org/10.1063/1.4964440

  233. X. Yu, J. Lu, G. Rozgonyi, Impact of Cu contamination on the electrical properties of a direct silicon bonded (110)/(100) interfacial grain boundary. J. Appl. Phys. 104, 113702/1-7 (2008). https://doi.org/10.1063/1.3032655

  234. M. Kittler, C. Ulhaq-Bouillet, V. Higgs, Influence of copper contamination on recombination activity of misfit dislocations in SiGe/Si epilayers: temperature dependence of activity as a marker characterizing the contamination level. J. Appl. Phys. 78, 4573–4583 (1995). https://doi.org/10.1063/1.359802

    Article  CAS  Google Scholar 

  235. J.G. Lee, S. Roy Morrison, Copper passivation of dislocations in silicon. J. Appl. Phys. 64, 6679–6683 (1988). https://doi.org/10.1063/1.342023

    Article  CAS  Google Scholar 

  236. S.K. Estreicher, Copper, lithium, and hydrogen passivation of boron in c-Si. Phys. Rev. B 41, 5447–5450 (1990). https://doi.org/10.1103/PhysRevB.41.5447

    Article  CAS  Google Scholar 

  237. M.O. Aboelfotoh, B.G. Svensson, Copper passivation of boron in silicon and boron reactivation kinetics. Phys. Rev. B 44, 12742–12747 (1991). https://doi.org/10.1103/PhysRevB.44.12742

    Article  CAS  Google Scholar 

  238. B.G. Svensson, M.O. Aboelfotoh, L.J. Lindström, Silicide formation and the generation of point defects in silicon. Phys. Rev. Lett. 66, 3028–3031 (1991). https://doi.org/10.1103/PhysRevLett.66.3028

    Article  CAS  Google Scholar 

  239. F.D. McDaniel, S.A. Datar, B.N. Guo, S.N. Renfrow, Z.Y. Zhao, J.M. Anthony, Low-level copper concentration measurements in silicon wafers using trace-element accelerator mass spectrometry. Appl. Phys. Lett. 72, 3008–3010 (1998). https://doi.org/10.1063/1.121523

    Article  CAS  Google Scholar 

  240. V. Bertagna, F. Rouelle, R. Erre, M. Chemla, Electrochemical test for silicon surface contamination by copper traces in HF, HF + Cl and HF + NH4F dilute solutions. Semicond. Sci. Technol. 15, 121–125 (2000). https://doi.org/10.1088/0268-1242/15/2/307

    Article  CAS  Google Scholar 

  241. H. Shimizu, S. Ishiwari, Pack-extraction method combined with inductively coupled plasma mass spectroscopy to monitor metal contaminants on surfaces of silicon wafers. Semicond. Sci. Technol. 15, 776–781 (2000). https://doi.org/10.1088/0268-1242/15/7/320

    Article  CAS  Google Scholar 

  242. M.B. Shabani, Y. Shiina, F.G. Kirscht, Y. Shimanuki, Recent advanced applications of AAS and ICP-MS in the semiconductor industry. Mater. Sci. Eng. B 102, 238–246 (2003). https://doi.org/10.1016/S0921-5107(02)00739-0

    Article  CAS  Google Scholar 

  243. S.F. Koh, W.L. Lim, T.Y. Tou, Enhanced detection of copper impurity in silicon wafer by dynamic secondary ion mass spectrometry. Electrochem. Solid-State Lett. 14, H110–H113 (2011). https://doi.org/10.1149/1.3526095

    Article  CAS  Google Scholar 

  244. L. Köster, P. Blöchl, L. Fabry, Element specific diagnosis using microwave reflection photoconductive decay. Jpn. J. Appl. Phys. 34, 932–936 (1995). https://doi.org/10.1143/JJAP.34.932

    Article  Google Scholar 

  245. M. Itsumi, Y. Sato, K. Imai, N. Yabumoto, Characterization of metallic impurities in Si using a recombination-lifetime correlation method. J. Appl. Phys. 82, 3250–3255 (1997). https://doi.org/10.1063/1.365632

    Article  CAS  Google Scholar 

  246. K. Kurita, T. Shingyouji, Identification and quantification of transition metal impurities in Czochralski silicon wafers using microwave photoconductive decay lifetime measurements. Jpn. J. Appl. Phys. 37, 5861–5865 (1998). https://doi.org/10.1143/JJAP.37.5861

    Article  CAS  Google Scholar 

  247. D.A. Ramappa, W.B. Henley, Surface photovoltage analysis of copper in p-type silicon. Appl. Phys. Lett. 72, 2298–2300 (1998). https://doi.org/10.1063/1.121341

    Article  CAS  Google Scholar 

  248. M. Boehringer, J. Hauber, Improved copper detection in hydrofluoric acid by recombination lifetime measurements on dedicated silicon substrates. Appl. Phys. Lett. 80, 527–529 (2002). https://doi.org/10.1063/1.1436272

    Article  CAS  Google Scholar 

  249. M. Boehringer, J. Hauber, S. Passefort, K. Eason, In-line copper monitoring using non-contact Q-V-SPV techniques. Electrochem. Soc. Proc. 03, 42–49 (2003)

    Google Scholar 

  250. M. Boehringer, J. Hauber, S. Passefort, K. Eason, In-line copper contamination monitoring using noncontact Q-VSPV techniques. J. Electrochem. Soc. 152, G1–G6 (2005). https://doi.org/10.1149/1.1823992

    Article  CAS  Google Scholar 

  251. H. Savin, M. Yli-Koski, A. Haarahiltunen, H. Talvitie, J. Sinkkonen, Contactless diagnostic tools and metallic contamination in the semiconductor industry. ECS Trans. 11(3), 319–329 (2007). https://doi.org/10.1149/1.2778674

    Article  CAS  Google Scholar 

  252. M. Itsumi, Method for determining metal contamination by combining p-type Si and n-type Si recombination lifetime measurements. Appl. Phys. Lett. 63, 1095–1097 (1993). https://doi.org/10.1063/1.109791

    Article  CAS  Google Scholar 

  253. W.B. Henley, D.A. Ramappa, L. Jastrzebski, Detection of copper contamination in silicon by surface photovoltage diffusion length measurements. Appl. Phys. Lett. 74, 278–280 (1999). https://doi.org/10.1063/1.123280

    Article  CAS  Google Scholar 

  254. D.A. Ramappa, Surface photovoltage analysis of phase transformation of copper in p-type silicon. Appl. Phys. Lett. 76, 3756–3758 (2000). https://doi.org/10.1063/1.126797

    Article  CAS  Google Scholar 

  255. M. Yli-Koski, M. Palokangas, A. Haarahiltunen, H. Väinölä, J. Storgårds, H. Holmberg, J. Sinkkonen, Detection of low-level copper contamination in p-type silicon by means of microwave photoconductive decay measurements. J. Phys. Condens. Matter 14, 13119–13125 (2002). https://doi.org/10.1088/0953-8984/14/48/358

    Article  CAS  Google Scholar 

  256. H. Väinölä, M. Yli-Koski, A. Haarahiltunen, J. Sinkkonen, Sensitive copper detection in p-type silicon using μ-PCD.  Electrochem. Soc. Proc. 20, 249–257 (2002)

    Google Scholar 

  257. H. Väinölä, M. Yli-Koski, A. Haarahiltunen, J. Sinkkonen, Sensitive copper detection in p-type silicon using μPCD. J. Electrochem. Soc. 150, G790–G794 (2003). https://doi.org/10.1149/1.1624845

    Article  CAS  Google Scholar 

  258. M. Yli-Koski, H. Savin, E. Saarnilehto, A. Haarahiltunen, J. Sinkkonen, G. Berenyi, T. Pavelka, Measurement of copper in p-type silicon using charge-carrier lifetime methods. Solid State Phenom. 108–109, 643–648 (2005). https://doi.org/10.4028/www.scientific.net/SSP.108-109.643

  259. H. Väinölä, E. Saarnilehto, M. Yli-Koski, A. Haarahiltunen, J. Sinkkonen, G. Berenyi, T. Pavelka, Quantitative copper measurement in oxidized p-type silicon wafers using microwave photoconductivity decay. Appl. Phys. Lett. 87, 032109/1-3 (2005). https://doi.org/10.1063/1.1999008

  260. A. Inglese, J. Lindroos, H. Savin, Accelerated light-induced degradation for detecting copper contamination in p-type silicon. Appl. Phys. Lett. 107, 052101/1-4 (2015). https://doi.org/10.1063/1.4927838

  261. A. Inglese, J. Lindroos, H. Vahlman, H. Savin, Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy. J. Appl. Phys. 120, 125703/1-8 (2016). https://doi.org/10.1063/1.4963121

  262. J. Lindroos, H. Savin, Formation kinetics of copper-related light-induced degradation in crystalline silicon. J. Appl. Phys. 116, 234901/1-5 (2014). https://doi.org/10.1063/1.4904197

  263. Y. Boulfrad, J. Lindroos, M. Wagner, F. Wolny, M. Yli-Koski, H. Savin, Experimental evidence on removing copper and light-induced degradation from silicon by negative charge. Appl. Phys. Lett. 105, 182108/1-3 (2014). https://doi.org/10.1063/1.4901533

  264. Y. Boulfrad, J. Lindroos, A. Inglese, M. Yli-Koski, H. Savin, Reduction of light-induced degradation of boron-doped solar-grade Czochralski silicon by corona charging. Energy Proc. 38, 531–535 (2013). https://doi.org/10.1016/j.egypro.2013.07.313

    Article  CAS  Google Scholar 

  265. J. Lindroos, Y. Boulfrad, M. Yli-Koski, H. Savin, Preventing light-induced degradation in multicrystalline silicon. J. Appl. Phys. 115, 154902/1-5 (2014). https://doi.org/10.1063/1.4871404

  266. H. Vahlman, A. Haarahiltunen, W. Kwapil, J. Schön, A. Inglese, H. Savin, Modeling of light-induced degradation due to Cu precipitation in p-type silicon. I. General theory of precipitation under carrier injection. J. Appl. Phys. 121, 195703/1-10 (2017). https://doi.org/10.1063/1.4983454

  267. H. Vahlman, A. Haarahiltunen, W. Kwapil, J. Schön, A. Inglese, H. Savin, Modeling of light-induced degradation due to Cu precipitation in p-type silicon. II. Comparison of simulations and experiments. J. Appl. Phys. 121, 195704/1-11 (2017). https://doi.org/10.1063/1.4983455

  268. T. Heiser, A. Mesli, Determination of the copper diffusion coefficient in silicon from transient ion-drift. Appl. Phys. A 57, 325–328 (1993). https://doi.org/10.1007/BF00332285

    Article  Google Scholar 

  269. A. Zamouche, T. Heiser, A. Mesli, Investigation of fast diffusing impurities in silicon by a transient ion drift method. Appl. Phys. Lett. 66, 631–633 (1995). https://doi.org/10.1063/1.1.114142

    Article  CAS  Google Scholar 

  270. T. Heiser, E.R. Weber, Transient ion-drift-induced capacitance signals in semiconductors. Phys. Rev. B 58, 3893–3903 (1998). https://doi.org/10.1103/PhysRevB.58.3893

    Article  CAS  Google Scholar 

  271. T. Heiser, A.A. Istratov, C. Flink, E.R. Weber, Electrical characterization of copper related defect reactions in silicon. Mater. Sci. Eng. B 58, 149–154 (1999). https://doi.org/10.1016/S0921-5107(98)00287-6

    Article  Google Scholar 

  272. T. Heiser, A. Belayachi, J.P. Schunck, Copper behavior in bulk silicon and associated characterization techniques. J. Electrochem. Soc. 150, G831–G837 (2003). https://doi.org/10.1149/1.1627351

    Article  CAS  Google Scholar 

  273. T. Heiser, A. Belayachi, J.P. Schunck, Copper behavior in bulk silicon and associated characterization techniques. Electrochem. Soc. Proc. 03, 5–20 (2003)

    Google Scholar 

  274. A. Belayachi, T. Heiser, J.P. Schunck, S. Bourdais, P. Bloechl, A. Huber, A. Kempf, Optimisation of a combined transient-ion-drift/rapid thermal annealing process for copper detection in silicon. Mater. Sci. Eng. B 102, 218–221 (2003). https://doi.org/10.1016/S0921-5107(02)00735-3

    Article  CAS  Google Scholar 

  275. A. Belayachi, T. Heiser, J.P. Schunck, A. Kempf, Influence of light on interstitial copper in p-type silicon. Appl. Phys. A 80, 201–204 (2005). https://doi.org/10.1007/s00339-004-3038-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cor Claeys .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claeys, C., Simoen, E. (2018). Electrical Activity of Iron and Copper in Si, SiGe and Ge. In: Metal Impurities in Silicon- and Germanium-Based Technologies . Springer Series in Materials Science, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-319-93925-4_5

Download citation

Publish with us

Policies and ethics