Skip to main content

Gravitropism in Fungi, Mosses and Ferns

  • Chapter
  • First Online:
Book cover Gravitational Biology I

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

Abstract

Motile pseudoplasmodia of cellular and acellular slime molds show gravitaxis while unicellular Dictyostelium amoebae do not. Fungi display gravitropism of their fruiting bodies which is thought to facilitate spore dispersal. Caulonemata and sporophytes of liverworts and mosses show negative gravitropism which is a also observed in sporophytes of ferns. Several hypotheses have been proposed to explain the mechanism for graviperception but none has been proven yet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloni R, Aloni E, Langhans M, Ullrich C (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block I, Wolke A, Briegleb W, Wohlfarth-Bottermann KE, Merbold U, Brinckmann E, Brillouet C (1992) Graviresponse of Physarum – investigations in actual weightlessness. Cell Biol Int Rep 16:1097–1102

    Article  Google Scholar 

  • Block I, Wolke A, Briegleb W (1994) Gravitational response of the slime mold Physarum. Adv Space Res 14:21–34

    Article  CAS  PubMed  Google Scholar 

  • Block I, Rabien H, Ivanova K (1998) Involvement of the second messenger cAMP in the gravity-signal transduction in Physarum. Adv Space Res 21:1311–1314

    Article  CAS  PubMed  Google Scholar 

  • Braun M (2002) Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemata. Protoplasma 219:150–159

    Article  PubMed  Google Scholar 

  • Cameron JN, Carlile MJ (1977) Negative geotaxis of zoospores of the fungus Phytophthora. J Gen Microbiol 98:599–602

    Article  Google Scholar 

  • Cameron JN, Carlile MJ (1980) Negative chemotaxis of zoospores of the fungus Phytophthora palmivora. J Gen Microbiol 120:347–353

    CAS  Google Scholar 

  • Coggin SJ, Pazun JL (1996) Dynamic complexity in Physarum polycephalum shuttle streaming. Protoplasma 194:243–249

    Article  Google Scholar 

  • Corrochano L, Galland P (2006) Photomorphogenesis and gravitropism in fungi. In: Kües U, Fischer R (eds) Growth, differentiation and sexuality. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research). Springer, Berlin, pp 233–259

    Google Scholar 

  • Cove DJ (1992) Regulation of development in the moss, Physcomitrella patens. In: Brody S, Cove DJ (eds) Developmental biology. A molecular genetic approach. Springer, Berlin, pp 179–193

    Google Scholar 

  • de Lacy Costello B, Adamatzky AI (2013) Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals. Commun Integr Biol 6:e25030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devreotes P (1989) Dictyostelium discoideum: a model system for cell-cell interactions in development. Science 245:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Eibel P, Schimek C, Fries V, Grolig F, Schapat T, Schmidt W, Schneckenburger H, Ootaki T, Galland P (2000) Statoliths in Phycomyces: characterization of octahedral protein crystals. Fungal Genet Biol 29:211–220

    Article  CAS  PubMed  Google Scholar 

  • Flores-Sandoval E, Eklund DM, Bowman JL (2015) A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet 11:e1005207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin KA, Whitelam GC (2004) Light signals, phytochromes and cross-talk with other environmental cues. J Exp Bot 55:271–276

    Article  CAS  PubMed  Google Scholar 

  • Glime JM (2017) Ecophysiology of development: protonemata. In: Glime JM (ed) Bryophyte ecology. Michigan Technological University and the International Association of Bryologists, Houghton, MI

    Google Scholar 

  • Grolig F, Herkenrath H, Pumm T, Gross A, Galland P (2004) Gravity susception by buoyancy: floating lipid globules in sporangiophores of Phycomyces. Planta 218:658–667

    Article  CAS  PubMed  Google Scholar 

  • Grolig F, Döring M, Galland P (2006) Gravisusception by buoyancy: a mechanism ubiquitous among fungi? Protoplasma 229:117–123

    Article  CAS  PubMed  Google Scholar 

  • Guttes E, Guttes S, Rusch HP (1961) Morphological observations on growth and differentiation of Physarum polycephalum grown in pure culture. Dev Biol 3:588–614

    Article  CAS  PubMed  Google Scholar 

  • Häder D-P, Hansel A (1991) Response of Dictyostelium discoideum to multiple environmental stimuli. Bot Acta 104:200–205

    Article  Google Scholar 

  • Henderson EJ (1975) The cyclic adenosine 3′’: 5′’-monophosphate receptor of Dictyostelium discoideum. Binding characteristics of aggregation-competent cells and variation of binding levels during the life cycle. J Biol Chem 250:4730–4736

    PubMed  CAS  Google Scholar 

  • Jenkins GI, Courtice GRM, Cove DJ (1986) Gravitropic responses of wild-type and mutant strains of the moss Physcomitrella patens. Plant Cell Environ 9:637–644

    Article  CAS  PubMed  Google Scholar 

  • Kamachi H, Noguchi M (2012) Negative gravitropism in dark-grown gametophytes of the fern Ceratopteris richardii. Am Fern J 102:147–153

    Article  Google Scholar 

  • Kern VD, Hock B (1993) Gravitropism of fungi – experiments in space. Life sciences research in space, proceedings of the fifth European symposium. European Space Agency, Arcachon

    Google Scholar 

  • Kern VD, Sack FD (1999) Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta 209:299–307

    Article  CAS  PubMed  Google Scholar 

  • Kern VD, Mendgen K, Hock B (1997) Flammulina as a model system for fungal graviresponses. Planta 203:23–32

    Article  Google Scholar 

  • Kern VD, Schwuchow JM, Reed DW, Nadeau JA, Lucas J, Skripnikov A, Sack FD (2005) Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221:149–157

    Article  CAS  PubMed  Google Scholar 

  • Kher K, Greening JP, Hatton JP, Frazer LN, Moore D (1992) Kinetics and mechanics of stem gravitropism in Coprinus cinereus. Mycol Res 96:817–824

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. Crit Rev Plant Sci 19:551–573

    Article  CAS  PubMed  Google Scholar 

  • Knight CD, Cove DJ (1991) The polarity of gravitropism in the moss Physcomitrella patens is reversed during mitosis and after growth on a clinostat. Plant Cell Environ 14:995–1001

    Article  Google Scholar 

  • Liu B, Sun G (1994) Effect of light on gravitropic response of rhizoids of gametophytes of ferns. Wuhan Bot Res 12:165–169

    Google Scholar 

  • Loomis W (2012) Dictyostelium discoideum: a developmental system. Elsevier, Groningen

    Google Scholar 

  • Mano E, Horiguchi G, Tsukaya H (2006) Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol 47:217–223

    Article  CAS  PubMed  Google Scholar 

  • Maree AFM, Panfilov AV, Hogeweg P (1999) Migration and thermotaxis of Dictyostelium discoideum slugs, a model study. J Theor Biol 199:297–309

    Article  CAS  Google Scholar 

  • Monzer J, Haindl E, Kern V, Dressel K (1994) Gravitropism of the basidiomycete Flammulina velutipes: morphological and physiological aspects of the graviresponse. Exp Mycol 18:7–19

    Article  CAS  PubMed  Google Scholar 

  • Moore D (1991) Perception and response to gravity in higher fungi—a critical appraisal. New Phytol 117:3–23

    Article  CAS  PubMed  Google Scholar 

  • Poff KL, Häder D-P (1984) An action spectrum for phototaxis by pseudoplasmodia of Dictyostelium discoideum. Photochem Photobiol 39:433–436

    Article  CAS  Google Scholar 

  • Sabovljević M, Vujičić M, Sabovljević A (2014) Plant growth regulators in bryophytes. Bot Serbica 38:99–107

    Google Scholar 

  • Sack FD (1997) Plastids and gravitropic sensing. Planta 203:63–68

    Article  Google Scholar 

  • Salmi ML, Roux SJ (2008) Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229:151–159

    Article  CAS  PubMed  Google Scholar 

  • Sauer HW (1982) Developmental biology of Physarum. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwuchow JM, Kim D, Sack FD (1995) Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria. Can J Bot 73:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Sharpe JM, Jernstedt JA (1990) Tropic responses controlling leaf orientation in the fern Danaea wendlandii (Marattiaceae). Am J Bot 77(8):1050–1059

    Article  Google Scholar 

  • Song L, Nadkarni SM, Bödeker HU, Beta C, Bae A, Franck C, Rappel W-J, Loomis WF, Bodenschatz E (2006) Dictyostelium discoideum chemotaxis: threshold for directed motion. Eur J Cell Biol 85:981–989

    Article  CAS  PubMed  Google Scholar 

  • Wagner TA, Cove DJ, Sack FD (1997) A positively gravitropic mutant mirrors the wild-type protonemal response in the moss Ceratodon purpureus. Planta 202:149–154

    Article  CAS  PubMed  Google Scholar 

  • Walker LM, Sack FD (1990) Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta 181:71–77

    Article  PubMed  Google Scholar 

  • Wolke A, Niemeyer F, Achenbach F (1987) Geotactic behavior of the acellular myxomycete Physarum polycephalum. Cell Biol Int Rep 11:525–528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Häder, DP. (2018). Gravitropism in Fungi, Mosses and Ferns. In: Gravitational Biology I. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93894-3_5

Download citation

Publish with us

Policies and ethics