Skip to main content

Additional Degrees of Parallelism Within the Adomian Decomposition Method

  • Conference paper
  • First Online:
Recent Advances in Computational Engineering (ICCE 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 124))

Included in the following conference series:

  • 458 Accesses

Abstract

The trend of future massively parallel computer architectures challenges the exploration of additional degrees of parallelism also in the time dimension when solving continuum mechanical partial differential equations. The Adomian decomposition method (ADM) is investigated to this respect in the present work. This is accomplished by comparison with the Runge-Kutta (RK) time integration and put in the context of the viscous Burgers equation.

Our studies show that both methods have similar restrictions regarding their maximal time step size. Increasing the order of the schemes leads to larger errors for the ADM compared to RK. However, we also discuss a parallelization within the ADM, reducing its runtime complexity from O(n 2) to O(n). This indicates the possibility to make it a viable competitor to RK, as fewer function evaluations have to be done in serial, if a high order method is desired. Additionally, creating ADM schemes of high-order is less complex than it is with RK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbaoui, K., Cherruault, Y.: Convergence of Adomian’s method applied to nonlinear equations. Math. Comput. Model. 20(9), 69–73 (1994). https://doi.org/10.1016/0895-7177(94)00163-4

    Article  MathSciNet  Google Scholar 

  2. Abbasbandy, S., Darvishi, M.: A numerical solution of Burgers’ equation by modified Adomian method. Appl. Math. Comput. 163(3), 1265–1272 (2005). https://doi.org/10.1016/j.amc.2004.04.061

    MathSciNet  MATH  Google Scholar 

  3. Adomian, G.: A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 102(2), 420–434 (1984). https://doi.org/10.1016/0022-247X(84)90182-3

    Article  MathSciNet  Google Scholar 

  4. Adomian, G.: Nonlinear Stochastic Operator Equations. Academic, New York (1986)

    MATH  Google Scholar 

  5. Adomian, G.: Solution of physical problems by decomposition. Comput. Math. Appl. 27(9), 145–154 (1994). https://doi.org/10.1016/0898-1221(94)90132-5

    Article  MathSciNet  Google Scholar 

  6. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Springer Science+Business Media, Dordrecht (1994)

    Book  Google Scholar 

  7. Adomian, G.: Explicit solutions of nonlinear partial differential equations. Appl. Math. Comput. 88(2), 117–126 (1997). https://doi.org/10.1016/S0096-3003(96)00141-5

    MathSciNet  MATH  Google Scholar 

  8. Akpan, I.: Adomian decomposition approach to the solution of the Burger’s equation. Am. J. Comput. Math. 5, 329–335 (2015). https://doi.org/10.4236/ajcm.2015.53030

    Article  Google Scholar 

  9. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997). https://doi.org/10.1016/S0168-9274(97)00056-1

    Article  MathSciNet  Google Scholar 

  10. Barros, S.R., Peixoto, P.S.: Computational aspects of harmonic wavelet Galerkin methods and an application to a precipitation front propagation model. Comput. Math. Appl. 61(4), 1217–1227 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43(4), 163–170 (1915). https://doi.org/10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2

    Article  Google Scholar 

  12. Burgers, J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948). https://doi.org/10.1016/S0065-2156(08)70100-5

    Article  MathSciNet  Google Scholar 

  13. Butcher, J.C.: Implicit Runge-Kutta processes. Math. Comput. 18(85), 50–64 (1964). https://doi.org/10.1090/S0025-5718-1964-0159424-9

    Article  MathSciNet  Google Scholar 

  14. Butcher, J.C.: Numerical Method for Ordinary Differential Equations, 2nd edn. Wiley, London (2008)

    Book  Google Scholar 

  15. Cheng, M., Scott, K., Sun, Y., Wu, B.: Explicit solution of nonlinear electrochemical models by the decomposition method. Chem. Eng. Technol. 25(12), 1155–1160 (2002). https://doi.org/10.1002/1521-4125(20021210)25:12<1155::AID-CEAT1155>3.0.CO;2-A

    Article  Google Scholar 

  16. Cherruault, Y., Adomian, G.: Decomposition methods: a new proof of convergence. Math. Comput. Model. 18(12), 103–106 (1993). https://doi.org/10.1016/0895-7177(93)90233-O

    Article  MathSciNet  Google Scholar 

  17. Cole, J.D.: On a quasi-linear parabolic equation occuring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951). https://doi.org/10.1090/qam/42889

    Article  Google Scholar 

  18. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928). https://doi.org/10.1007/BF01448839

    Article  MathSciNet  Google Scholar 

  19. de Sousa Basto, M.J.F.: Adomian decomposition method, nonlinear equations and spectral solutions of Burgers equation. Ph.D. Thesis, Faculdade de Engenharia da Universidade do Porto (2006)

    Google Scholar 

  20. Durran, D.: Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Texts in Applied Mathematics. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6412-0

  21. El-Sayed, S.M., Kaya, D.: On the numerical solution of the system of two-dimensional Burgers’ equations by the decomposition method. Appl. Math. Comput. 158(1), 101–109 (2004). https://doi.org/10.1016/j.amc.2003.08.066

    MathSciNet  MATH  Google Scholar 

  22. El-Tawil, M.A., Bahnasawi, A.A., Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method. Appl. Math. Comput. 157(2), 503–514 (2004). https://doi.org/10.1016/j.amc.2003.08.049

    MathSciNet  MATH  Google Scholar 

  23. Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and Time Domain Decomposition. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-23321-5_3

  24. Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1977)

    Book  Google Scholar 

  25. Guellal, S., Grimalt, P., Cherruault, Y.: Numerical study of Lorenz’s equation by the Adomian method. Comput. Math. Appl. 33(3), 25–29 (1997). https://doi.org/10.1016/S0898-1221(96)00234-9

    Article  MathSciNet  Google Scholar 

  26. Hopf, E.: The partial differential equation u t + uu x = μ xx. Commun. Pure Appl. Math. 3(3), 201–230 (1950). https://doi.org/10.1002/cpa.3160030302

    Article  Google Scholar 

  27. Jiao, Y., Yamamoto, Y., Dang, C., Hao, Y.: An aftertreatment technique for improving the accuracy of Adomian’s decomposition method. Comput. Math. Appl. 43(6), 783–798 (2002). https://doi.org/10.1016/S0898-1221(01)00321-2

    Article  MathSciNet  Google Scholar 

  28. Kaya, D., Yokus, A.: A numerical comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations. Math. Comput. Simul. 60(6), 507–512 (2002). https://doi.org/10.1016/S0378-4754(01)00438-4

    Article  MathSciNet  Google Scholar 

  29. Kaya, D., Yokus, A.: A decomposition method for finding solitary and periodic solutions for a coupled higher-dimensional Burgers equations. Appl. Math. Comput. 164(3), 857–864 (2005). https://doi.org/10.1016/j.amc.2004.06.012

    MathSciNet  MATH  Google Scholar 

  30. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM e-books. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)

    Google Scholar 

  31. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., et al.: Numerical Recipes, vol. 3. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  32. Shawagfeh, N., Kaya, D.: Comparing numerical methods for the solutions of systems of ordinary differential equations. Appl. Math. Lett. 17(3), 323–328 (2004). https://doi.org/10.1016/S0893-9659(04)90070-5

    Article  MathSciNet  Google Scholar 

  33. Vadasz, P., Olek, S.: Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz equations. Int. J. Heat Mass Trans. 43(10), 1715–1734 (2000). https://doi.org/10.1016/S0017-9310(99)00260-4

    Article  Google Scholar 

  34. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mathematics. Springer, Berlin (2009)

    Google Scholar 

  35. Zhu, H., Shu, H., Ding, M.: Numerical solutions of two-dimensional Burgers’ equations by discrete Adomian decomposition method. Comput. Math. Appl. 60(3), 840–848 (2010). https://doi.org/10.1016/j.camwa.2010.05.031

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Andreas Schmitt is supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt.

This work was partially accomplished during a research stay at NCAR which provided the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmitt, A., Schreiber, M., Schäfer, M. (2018). Additional Degrees of Parallelism Within the Adomian Decomposition Method. In: Schäfer, M., Behr, M., Mehl, M., Wohlmuth, B. (eds) Recent Advances in Computational Engineering. ICCE 2017. Lecture Notes in Computational Science and Engineering, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-93891-2_7

Download citation

Publish with us

Policies and ethics