Pilot Homicide-Suicide: A System-Theoretic Process Analysis (STPA) of Germanwings GWI18G

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 786)


Pilot homicide-suicides occur very rarely in commercial aviation. Nonetheless, when a crash like Germanwings flight 4U9525 has occurred, the stakeholders take action to improve current standards to help prevent new cases. The EASA-led task-force has proposed several recommendations. The System Theoretic Accident Process Analysis (STPA) of the accident investigates how European countermeasures have been improved the system at different levels. The new minimum cockpit occupancy of two personnel was tied to a safety and risk assessment by the operator whereas the cockpit door design was not changed. On a higher level a psychological health assessment for initial medicals class 1 has been added. Pilot support programs, an improvement of aeromedical services and a random drugs/alcohol screening complement the actions is being undertaken. Conflicts with privacy laws and medical confidentiality could not be solved entirely and are still being debated.


Homicide-suicide In-flight incapacitation Accident Modelling Systems theory 


  1. 1.
    Wu, A.C., Donnelly-McLay, D., Weisskopf, M.G., McNeely, E., Betancourt, T.S., Allen, J.G.: Airplane pilot mental health and suicidal thoughts: a cross-sectional descriptive study via anonymous web-based survey. Environ. Health 15, 121 (2016)CrossRefGoogle Scholar
  2. 2.
    International Civil Aviation Organization: Manual of Civil Aviation Medicine. Doc. International Civil Aviation Organization, Montréal, Canada (2012)Google Scholar
  3. 3.
    Kenedi, C., Friedman, S.H., Watson, D., Preitner, C.: Suicide and murder-suicide involving aircraft. Aerosp. Med. Hum. Perform. 87, 388–396 (2016)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Aerial Accident Investigation Committee: Japan Airlines Corporation belongs to Douglas DC–61 Type JA 8061 Tokyo International Airport (Haneda) Offshore Navigation May 16, 1982. Ministry of Transport (1984)Google Scholar
  6. 6.
    Saleva, O., Putkonen, H., Kiviruusu, O., Lönnqvist, J.: Homicide–suicide—an event hard to prevent and separate from homicide or suicide. Forensic Sci. Int. 166, 204–208 (2007)CrossRefGoogle Scholar
  7. 7.
    Panczak, R., Geissbühler, M., Zwahlen, M., Killias, M., Tal, K., Egger, M.: Homicide-suicides compared to homicides and suicides: systematic review and meta-analysis. Forensic Sci. Int. 233, 28–36 (2013)CrossRefGoogle Scholar
  8. 8.
    International Civil Aviation Organization: Annex 11 – Air Traffic Services. International Organization of Civil Aviation, Montreal (2016)Google Scholar
  9. 9.
    Evans, A.D.B.: Aeromedical risk: a numerical approach. In: Gradwell, D.P., Rainford, D.J. (eds.) Ernsting’s Aviation and Space Medicine, pp. 373–384. CRC Press, Boca Raton (2016)Google Scholar
  10. 10.
    Mitchell, S.J., Evans, A.D.B.: Flight safety and medical incapacitation risk of airline pilots. Aviat. Space Environ. Med. 75, 260–268 (2004)Google Scholar
  11. 11.
    European Aviation Safety Agency: Acceptable Means of Compliance and Guidance Material to Part-MED. European Aviation Safety Agency, Cologne (2011)Google Scholar
  12. 12.
    Airbus: A318/A319/A320/A321 Flight Crew Operating Manual. Airbus S.A.S., Blagnac Cedex, France (2013)Google Scholar
  13. 13.
    Leveson, N.G.: A new accident model for engineering safer systems. Saf. Sci. 42, 237–270 (2004)CrossRefGoogle Scholar
  14. 14.
    Leveson, N.G.: Engineering A Safer World: Systems Thinking Applied to Safety. MIT Press, Cambridge (2011)Google Scholar
  15. 15.
    Allison, C.K., Revell, K.M., Sears, R., Stanton, N.A.: Systems theoretic accident model and process (STAMP) safety modelling applied to an aircraft rapid decompression event. Saf. Sci. 98, 159–166 (2017)CrossRefGoogle Scholar
  16. 16.
    Plioutsias, A., Karanikas, N.: Using STPA in the evaluation of fighter pilots training programs. Procedia Eng. 128, 25–34 (2015)CrossRefGoogle Scholar
  17. 17.
    Fleming, C.H., Leveson, N.G.: Improving hazard analysis and certification of integrated modular avionics. J. Aerosp. Inf. Syst. 11, 397–411 (2014)Google Scholar
  18. 18.
    Chatzimichailidou, M.M., Karanikas, N., Plioutsias, A.: Application of STPA on small drone operations: a benchmarking approach. Procedia Eng. 179, 13–22 (2017)CrossRefGoogle Scholar
  19. 19.
    Lu, Y., Zhang, S.-G., Tang, P., Gong, L.: STAMP-based safety control approach for flight testing of a low-cost unmanned subscale blended-wing-body demonstrator. Saf. Sci. 74, 102–113 (2015)CrossRefGoogle Scholar
  20. 20.
    Ishimatsu, T., Leveson, N.G., Thomas, J.P., Fleming, C.H., Katahira, M., Miyamoto, Y., Ujiie, R., Nakao, H., Hoshino, N.: Hazard analysis of complex spacecraft using systems-theoretic process analysis. J. Spacecraft Rockets 51, 509–522 (2014)CrossRefGoogle Scholar
  21. 21.
    Leveson, N.G.: Technical and managerial factors in the NASA challenger and columbia losses: looking forward to the future. In: Kleinman, D.L., Cloud-Hansen, K.A., Matta, C., Handelsman, J. (eds.) Controversies in Science and Technology, From Climate to Chromosomes, vol. 2, pp. 237–261. Mary Ann Liebert, New Rochelle (2007)Google Scholar
  22. 22.
    Abdulkhaleq, A., Lammering, D., Wagner, S., Röder, J., Balbierer, N., Ramsauer, L., Raste, T., Boehmert, H.: A systematic approach based on STPA for developing a dependable architecture for fully automated driving vehicles. Procedia Eng. 179, 41–51 (2017)CrossRefGoogle Scholar
  23. 23.
    Siegel, A.W., Schraagen, J.M.C.: Beyond procedures: team reflection in a rail control centre to enhance resilience. Saf. Sci. 91, 181–191 (2017)CrossRefGoogle Scholar
  24. 24.
    Rasmussen, J.: Risk management in a dynamic society: a modelling problem. Saf. Sci. 27, 183–213 (1997)CrossRefGoogle Scholar
  25. 25.
    Rasmussen, J.: The role of hierarchical knowledge representation in decisionmaking and system management. IEEE Trans. Syst. Man Cybernet. 15, 234–243 (1985)CrossRefGoogle Scholar
  26. 26.
    Leveson, N.G.: Rasmussen’s legacy: a paradigm change in engineering for safety. Appl. Ergon. 59, 581–591 (2017)CrossRefGoogle Scholar
  27. 27.
    Čepin, M.: Event tree analysis. In: Čepin, M. (ed.) Assessment of Power System Reliability, pp. 89–99. Springer-Verlag, London (2011). Scholar
  28. 28.
    Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and applications: a review. IEEE Trans. Reliabil. R-34, 194–203 (1985)CrossRefGoogle Scholar
  29. 29.
    Geymar, J.A.B., Ebecken, N.F.F.: Fault-tree analysis: a knowledge-engineering approach. IEEE Trans. Reliab. 40, 37–45 (1995)CrossRefGoogle Scholar
  30. 30.
    Jordi, D.A., Fthenakis, V., Vílcheza, J.A., Arnaldosa, J.: Hazard and operability (HAZOP) analysis. A literature review. J. Hazard. Mater. 53, 19–32 (2010)Google Scholar
  31. 31.
    Bureau d’Enquêtes et d’Analyses pour la sécurité de l’aviation civile: Final Report: Accident on 24 March 2015 at Prads-Haute-Bléone (Alpes-de-Haute-Provence, France) to the Airbus A320-211 registered D-AIPX operated by Germanwings (2016)Google Scholar
  32. 32.
    Wiewiórowski, W.R.: EASA notification for prior checking “European Aero-Medical Repository” (EAMR) project. In: European Aviation Safety, A. (ed.), Bruessels, Belgium (2016)Google Scholar
  33. 33.
    Agency, E.A.S.: Action Plan for the Implementation of the Germanwings Task Force Recommendations. European Aviation Safety Agency, Cologne (2015)Google Scholar
  34. 34.
    European Aviation Safety Agency: Task Force on Measures Following the Accident of Germanwings Flight 9525: Final Report. European Aviation Safety Agency, Cologne, Germany (2015)Google Scholar
  35. 35.
    European Aviation Safety Agency: Minimum Cockpit Occupancy. Safety Information Bulletin. European Aviation Safety Agency, Cologne, Germany (2016)Google Scholar
  36. 36.
    European Aviation Safety Agency: Aircrew medical fitness: Implementation of the recommendations made by the EASA-led Germanwings Task Force on the accident of the Germanwings Flight 9525. Opinion No. 14/2016, vol. 14/2016. European Aviation Safety Agency, Cologne, Germany (2016)Google Scholar
  37. 37.
    European Aviation Safety Agency: Update of Part-MED (Annex IV to Commission Regulation (EU) No 1178/2011). Opinion No. 09/2016. European Aviation Safety Agency, Cologne, Germany (2016)Google Scholar
  38. 38.
    European Aviation Safety Agency: Authorised persons in the flight crew compartment. In: Safety Information Bulletin. European Aviation Safety Agency, Cologne (2015)Google Scholar
  39. 39.
    European Aviation Safety Agency: 2-persons in the cockpit SIB recommendation No. 2015-04: Summary of survey results on “Assessment of effectiveness of 2-persons-in-the-cockpit recommendation included in EASA SIB 2015–04”. Cologne, Germany (2016)Google Scholar
  40. 40.
    Low, H.: Germanwings Crash: Have Cockpit Doors Changed?. BBC News Magazine, London (2016)Google Scholar
  41. 41.
    Movsesian, S.: Enhanced Security Flight Deck Doors – Commercial Airplanes. SAE Technical Paper, vol. 2002-01-2998 (2002)Google Scholar
  42. 42.
    Guo, Y., Ji, M., You, X., Huang, J.: Protective effects of emotional intelligence and proactive coping on civil pilots. Aerosp. Med. Hum. Perform. 88, 858–865 (2017)CrossRefGoogle Scholar
  43. 43.
    Li, G., Baker, S.P., Qiang, Y., Rebok, G.W., McCarthy, M.L.: Alcohol violations and aviation accidents: findings from the U.S. mandatory alcohol testing program. Aviat. Space Environ. Med. 78, 510–513 (2007)Google Scholar
  44. 44.
  45. 45.
    Clark, J.M.: Assuring safer skies?: a survey of aeromedical issues post-germanwings. J. Air Law Commer. 81, 351–376 (2016)Google Scholar
  46. 46.
    Oehler, T.: Die ärztliche Schweigepflicht–neue Grenzen nach dem Germanwings-Absturz. Flugmedizin Tropenmedizin Reisemedizin 24, 118–121 (2017)CrossRefGoogle Scholar
  47. 47.
    Cockpit, V.: Positionspapier der Vereinigung Cockpit zur Veröffentlichung der EASA “Taskforce on Measures Follwing the Accident of Germanwings Flight 9525”. Vereinigung Cockpit, Frankfurt am Main (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Flight Guidance, German Aerospace CenterBrunswickGermany

Personalised recommendations