Skip to main content

Generalized Vertical Coordinates

  • Chapter
  • First Online:
Atmospheres and Oceans on Computers
  • 1198 Accesses

Abstract

So far, we have only used the Cartesian geopotential coordinate system consisting of three orthogonal spatial coordinates xyz. Relaxing the orthogonality between the vertical coordinate z and the two horizontal coordinates xy can make it much easier to analyze phenomena in atmospheres and oceans, and devise compelling models of them. The development of such non-orthogonal coordinate systems remains at the forefront of research in numerical modeling. The purpose of this chapter is, therefore, to present the salient issues relating to these generalized vertical coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Black TL (1994) The new NMC mesoscale Eta model: description and forecast examples. Weather Forecast 9(2):265–278. https://doi.org/10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2

  • Bleck R (1973) Numerical forecasting experiments based on conservation of potential vorticity on isentropic surfaces. J Appl Meteorol 12:737–752

    Article  Google Scholar 

  • Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model. 4(1):55–88

    Article  Google Scholar 

  • Bleck R, Smith L (1990) A wind-driven isopycnic coordinate model of the north and equatorial Atlantic ocean. 1. Model development and supporting experiments. J Geophys Res 95C:3273–3285

    Article  Google Scholar 

  • Blumberg A, Mellor G (1987) A description of a three-dimensional coastal ocean circulation model. Three-dimensional coastal ocean models. In: Heaps N (ed) Coastal and estuarine sciences, vol 4. American Geophysical Union, Washington, pp 1–16

    Google Scholar 

  • Bourke W (1974) A multilevel spectral model. I. Formulation and hemispheric integrations. Mon Weather Rev 102:687–701

    Article  Google Scholar 

  • Charney JG, Phillips NA (1953) Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Meteorol 10:71–99

    Article  Google Scholar 

  • Eliassen A (1949) The quasi-static equations of motion with pressure as independent variable. Geofys Publ 17(3):44 pp

    Google Scholar 

  • Eliassen A, Raustein E (1968) A numerical integration experiment with a model atmosphere based on isentropic coordinates. Meteorol Ann 5:45–63

    Google Scholar 

  • Eliassen A, Raustein E (1970) A numerical integration experiment with a six-level atmospheric model with isentropic information surface. Meteorol Ann 5:429–449

    Google Scholar 

  • Engedahl H (1995) Use of the flow relaxation scheme in a three-dimensional baroclinic ocean model with realistic topography. Tellus 47A:365–382

    Article  Google Scholar 

  • Griffies SM (2004) Fundamentals of ocean climate models. Princeton University Press, Princeton. ISBN 0-691-11892-2

    Google Scholar 

  • Haidvogel DB, Arango H, Budgell PW, Cornuelle BD, Curchitser E, Lorenzo ED, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J Comput Phys 227(7):3595–3624. https://doi.org/10.1016/j.jcp.2007.06.016

    Article  Google Scholar 

  • Kasahara A (1974) Various vertical coordinate systems used for numerical weather prediction. Mon Weather Rev 102:509–522

    Article  Google Scholar 

  • Phillips NA (1957) A coordinate system having some special advantages for numerical forecasting. J Meteorol 14:184–185

    Article  Google Scholar 

  • Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227:3486–3514

    Google Scholar 

  • Shapiro MA (1974) The use of isentropic coordinates in the formulation of objective analysis and numerical prediction models. Atmosphere 12:10–17

    Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional ocean modeling system (ROMS): a split-explicit, free-surface, topography-following coordinate ocean model. Ocean Model 9:347–404

    Article  Google Scholar 

  • Sutcliffe RC (1947) A contribution to the problem of development. Q J R Meteorol Soc 73:370–383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Petter Røed .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Røed, L.P. (2019). Generalized Vertical Coordinates. In: Atmospheres and Oceans on Computers. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-93864-6_8

Download citation

Publish with us

Policies and ethics