Skip to main content

How Should Knowledge Composed of Schemas be Represented in Order to Optimize Student Model Accuracy?

  • Conference paper
  • First Online:
Book cover Artificial Intelligence in Education (AIED 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10947))

Included in the following conference series:

  • 5910 Accesses

Abstract

Most approaches to student modeling assume that students’ knowledge can be represented by a large set of knowledge components that are learned independently. Knowledge components typically represent fairly small pieces of knowledge. This seems to conflict with the literature on problem solving which suggests that expert knowledge is composed of large schemas. This study compared several domain models for knowledge that is arguably composed of schemas. The knowledge is used by students to construct system dynamics models with the Dragoon intelligent tutoring system. An evaluation with 52 students showed that a relative simple domain model, that assigned one KC to each schema and schema combination, sufficed and was more parsimonious than other domain models with similarly accurate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes, T., Stamper, J., Madhyastha, T.: Comparative analysis of concept derivation using the q-matrix method and facets. In: Workshop at Educational Data Mining at AAAI 2006, pp. 21–30 (2006)

    Google Scholar 

  2. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17

    Chapter  Google Scholar 

  3. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4(4), 253–278 (1994)

    Article  Google Scholar 

  4. Daroczy, G., Wolska, M., Meurers, W.D., Nuerk, H.C.: Word problems: a review of linguistic and numerical factors contributing to their difficulty. Front. Psychol. 6, 348 (2015)

    Article  Google Scholar 

  5. De La Torre, J.: An empirically based method of Q-matrix validation for the dina model: development and applications. J. Educ. Meas. 45(4), 343–362 (2008)

    Article  Google Scholar 

  6. DeCarlo, L.T.: Recognizing uncertainty in the q-matrix via a bayesian extension of the dina model. Appl. Psychol. Meas. 36(6), 447–468 (2012)

    Article  Google Scholar 

  7. Desmarais, M., Beheshti, B., Xu, P.: The refinement of a q-matrix: assessing methods to validate tasks to skills mapping. In: Educational Data Mining 2014 (2014)

    Google Scholar 

  8. Desmarais, M.C., Naceur, R.: A matrix factorization method for mapping items to skills and for enhancing expert-based Q-matrices. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 441–450. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_45

    Chapter  Google Scholar 

  9. Doerr, H.M.: Stella ten years later: a review of the literature. Int. J. Comput. Math. Learn. 1(2), 201–224 (1996)

    Article  Google Scholar 

  10. Feng, M., Heffernan, N., Mani, M., Heffernan, C.: Using mixed-effects modeling to compare different grain-sized skill models. In: Educational Data Mining: Papers from the AAAI Workshop. AAAI Press, Menlo Park (2006)

    Google Scholar 

  11. Gonzalez-Brenes, J., Huang, Y.: Your model is predictive-but is it useful? Theoretical and empirical considerations of a new paradigm for adaptive tutoring evaluation. In: Proceedings of the 8th International Conference on Educational Data Mining. University of Pittsburgh (2015)

    Google Scholar 

  12. González-Brenes, J., Huang, Y., Brusilovsky, P.: General features in knowledge tracing to model multiple subskills, temporal item response theory, and expert knowledge. In: The 7th International Conference on Educational Data Mining, pp. 84–91. University of Pittsburgh (2014)

    Google Scholar 

  13. Heffernan, N.T., Koedinger, K.R.: The composition effect in symbolizing: the role of symbol production vs. text comprehension. In: Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society, pp. 307–312 (1997)

    Google Scholar 

  14. Iwaniec, D.M., Childers, D.L., VanLehn, K., Wiek, A.: Studying, teaching and applying sustainability visions using systems modeling. Sustainability 6(7), 4452–4469 (2014)

    Article  Google Scholar 

  15. Koedinger, K.R., Nathan, M.J.: The real story behind story problems: effects of representations on quantitative reasoning. J. Learn. Sci. 13(2), 129–164 (2004)

    Article  Google Scholar 

  16. Koedinger, K.R., Yudelson, M.V., Pavlik, P.I.: Testing theories of transfer using error rate learning curves. Topics Cogn. Sci. 8(3), 589–609 (2016)

    Article  Google Scholar 

  17. Mayer, R.E.: Frequency norms and structural analysis of algebra story problems into families, categories, and templates. Instr. Sci. 10(2), 135–175 (1981)

    Article  Google Scholar 

  18. Nižnan, J., Pelánek, R., Řihák, J.: Mapping problems to skills combining expert opinion and student data. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula, P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 113–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14896-0_10

    Chapter  Google Scholar 

  19. Paige, J.M.: Cognitive processes in solving algebra word problems. Problem solving (1966)

    Google Scholar 

  20. Pavlik Jr., P.I., Brawner, K., Olney, A., Mitrovic, A.: A review of student models used in intelligent tutoring systems. In: Design Recommendations for Intelligent Tutoring Systems, pp. 39–68 (2013)

    Google Scholar 

  21. Pelánek, R.: Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques. User Model. User-Adap. Inter. 27(3–5), 313–350 (2017)

    Article  Google Scholar 

  22. Richmond, B.: STELLA: software for bringing system dynamics to the other 98%. In: Proceedings of the 1985 International Conference of the System Dynamics Society: 1985 International System Dynamics Conference, pp. 706–718 (1985)

    Google Scholar 

  23. Shute, V.J., Kim, Y.J.: Formative and stealth assessment. In: Spector, J., Merrill, M., Elen, J., Bishop, M. (eds.) Handbook of Research on Educational Communications and Technology, pp. 311–321. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-3185-5_25

    Chapter  Google Scholar 

  24. VanLehn, K.: Student modeling. In: Polson, M., Richardson, J. (eds.) Foundations of Intelligent Tutoring Systems, vol. 55, p. 78. Erlbaum, Hillsade (1988)

    Google Scholar 

  25. VanLehn, K.: Problem solving and cognitive skill acquisition. In: Foundations of Cognitive Science, pp. 527–579. MIT Press (1989)

    Google Scholar 

  26. VanLehn, K.: Cognitive skill acquisition. In: Spence, J.T. (ed.) Annual Review of Psychology, vol. 47, pp. 513–539. Annual Reviews Inc. (1996)

    Google Scholar 

  27. VanLehn, K., Chung, G., Grover, S., Madni, A., Wetzel, J.: Learning science by constructing models: can dragoon increase learning without increasing the time required? Int. J. Artif. Intell. Educ. 26(4), 1033–1068 (2016)

    Article  Google Scholar 

  28. VanLehn, K., Wetzel, J., Grover, S., van de Sande, B.: Learning how to construct models of dynamic systems: an initial evaluation of the dragoon intelligent tutoring system. IEEE Trans. Learn. Technol. (2017)

    Google Scholar 

  29. Wetzel, J., VanLehn, K., Butler, D., Chaudhari, P., Desai, A., Feng, J., Grover, S., Joiner, R., Kong-Sivert, M., Patade, V., et al.: The design and development of the dragoon intelligent tutoring system for model construction: lessons learned. Interact. Learn. Environ. 25(3), 361–381 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF IIS-1628782, NSF IIS-1123823, ONR N00014-13-C-0029, ONR N00014-12-C-0643 and US Army, W911NF-04-D-0005, Delivery Order No. 0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grover, S., Wetzel, J., VanLehn, K. (2018). How Should Knowledge Composed of Schemas be Represented in Order to Optimize Student Model Accuracy?. In: Penstein Rosé, C., et al. Artificial Intelligence in Education. AIED 2018. Lecture Notes in Computer Science(), vol 10947. Springer, Cham. https://doi.org/10.1007/978-3-319-93843-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93843-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93842-4

  • Online ISBN: 978-3-319-93843-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics