Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 600 Accesses

Abstract

In this chapter we discuss briefly the suitable mathematical structure of probabilistic models used in the description of experiments carried in a hypothetical physical system which is general enough to include Classical and Quantum Probability Theory. We discuss the notion of completion of a probabilistic model and the assumption of noncontextuality, basic ingredients for what comes in the next chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, three out of these 117 measurements count twice, giving rise to a 120-vertex graph (see Fig. A.4).

  2. 2.

    To be precise, this is the definition of a projective measurement, which is not the most general measurement one can perform in a quantum system. However, repeatability suggests the restriction to projective measurements when dealing with contextuality. We will restrict our definition to this special class of measurements, and the word measurement in this book will always mean projective measurement for quantum systems. To define the most general measurement in quantum theory, one needs the notion of Generalised Measurement, related to the notion of POVM (positive operator valued measure), and the interested reader can find the definition in Ref. [NC00].

  3. 3.

    The reader familiar with the notion of hidden-variable model will notice that it is equivalent to our notion of completion. This term comes from the idea of existence of a deeper theory describing some underlying reality. However, it is important to say that such original motivation is superfluous. A completion is simply a classical probabilistic model extending the given behaviour, no matter how one interprets probabilities.

References

  1. B. Amaral, The exclusivity principle and the set o quantum distributions. Ph.D. Thesis, Universidade Federal de Minas Gerais, 2014

    Google Scholar 

  2. B. Amaral, M.T. Cunha, A. Cabello, Exclusivity principle forbids sets of correlations larger than the quantum set. Phys. Rev. A 89, 030101 (2014)

    Article  Google Scholar 

  3. A. Aspect, Proposed experiment to test separable hidden-variable theories. Phys. Lett. A 54(2), 117–118 (1975)

    Article  Google Scholar 

  4. H. Barnum, A. Wilce, Post-Classical Probability Theory (Springer, Dordrecht, 2016), pp. 367–420

    Google Scholar 

  5. J. Barrett, Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)

    Article  Google Scholar 

  6. J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  MathSciNet  Google Scholar 

  7. G. Borges, M. Carvalho, P.L. de Assis, J. Ferraz, M. Araújo, A. Cabello, M.T. Cunha, S. Pádua, Experimental test of the quantum violation of the noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 89, 052106 (2014)

    Article  Google Scholar 

  8. A. Cabello, Simple explanation of the quantum violation of a fundamental inequality. Phys. Rev. Lett. 110, 060402 (2013)

    Article  Google Scholar 

  9. G. Cañas, E. Acuña, J. Cariñe, J.F. Barra, E.S. Gómez, G.B. Xavier, G. Lima, A. Cabello, Experimental demonstration of the connection between quantum contextuality and graph theory. Phys. Rev. A 94, 012337 (2016)

    Article  Google Scholar 

  10. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  Google Scholar 

  11. M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, J. Beyer, T. Gerrits, A.E. Lita, L.K. Shalm, S.W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  Google Scholar 

  12. A. Gleason, Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6(6), 885–893 (1957)

    MathSciNet  MATH  Google Scholar 

  13. G. Grimmett, D. Stirzaker, Probability and Random Processes. Probability and Random Processes (OUP, Oxford, 2001)

    MATH  Google Scholar 

  14. Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, H. Rauch, Quantum contextuality in a single-neutron optical experiment. Phys. Rev. Lett. 96, 230401 (2006)

    Article  Google Scholar 

  15. B. Hensen, H. Bernien, A.E. Dreau, A. Reiserer, N. Kalb, M.S. Blok, R.F.L. Ruitenberg, J. Vermeulen, R.N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Google Scholar 

  16. B. Hensen, N. Kalb, M.S. Blok, A.E. Dréau, A. Reiserer, R.F.L. Vermeulen, R.N. Schouten, M. Markham, D.J. Twitchen, K. Goodenough, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Loophole-free bell test using electron spins in diamond: second experiment and additional analysis. Sci. Rep. 6, 30289 (2016)

    Article  Google Scholar 

  17. Y. Huang, D. Li, M. Cao, C. Zhang, Y. Zhang, B. Liu, C. Li, G. Guo, Experimental test of state-independent quantum contextuality of an indivisible quantum system. Phys. Rev. A 87, 052133 (2009)

    Article  Google Scholar 

  18. B.R. James, Probabilidade: um curso em nível intermediário (Projeto Euclides, Redwood City, 1981)

    MATH  Google Scholar 

  19. G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, State-independent experimental test of quantum contextuality. Nature (London) 460, 494 (2009)

    Google Scholar 

  20. S. Kochen, E. Specker, The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  21. F.M. Leupold, M. Malinowski, C. Zhang, V. Negnevitsky, A. Cabello, J. Alonso, J.P. Home, Sustained state-independent quantum contextual correlations from a single ion. Phys. Rev. Lett. 120(18), 180401 (2018). https://doi.org/10.1103/PhysRevLett.120.180401

  22. Y.-C. Liang, R.W. Spekkens, H.M. Wiseman, Specker’s parable of the overprotective seer: a road to contextuality, nonlocality and complementarity. Phys. Rep. 506(1), 1 –39 (2011)

    Article  MathSciNet  Google Scholar 

  23. R. Lapkiewicz, P. Li, C. Schaeff, N.K. Langford, S. Ramelow, M. Wieśniak, A. Zeilinger, Experimental non-classicality of an indivisible quantum system. Nature (London) 474, 490 (2011)

    Google Scholar 

  24. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  25. L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Zhang, D.R. Kumor, W.H. Farr, F. Marsili, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M.W. Mitchell, P.G. Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill, S.W. Nam, Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Google Scholar 

  26. A. Shiryaev, S.S. Wilson, Probability. Graduate Texts in Mathematics (Springer, Berlin, 1995)

    Google Scholar 

  27. J. von Neumman, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955)

    Google Scholar 

  28. J.A. Wheeler, The “past” and the “delayed-choice” double-slit experiment, in Mathematical Foundations of Quantum Theory, ed. by A.R. Marlow (Academic Press, London, 978), pp. 9–48

    Google Scholar 

  29. B. Yan, Quantum correlations are tightly bound by the exclusivity principle. Phys. Rev. Lett. 110, 260406 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amaral, B., Terra Cunha, M. (2018). Introduction. In: On Graph Approaches to Contextuality and their Role in Quantum Theory. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-93827-1_1

Download citation

Publish with us

Policies and ethics