Skip to main content

ACO Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10941))

Abstract

Proteins complexes accomplish biological functions such as transcription of DNA and translation of mRNA. Detecting protein complexes correctly and efficiently is becoming a challenging task. This paper presents a novel algorithm, core-attachment based on ant colony optimization (CA-ACO), which detects complexes in three stages. Firstly, initialize the similarity matrix. Secondly, complexes are predicted by clustering in the dynamic PPI networks. In the step, the clustering coefficient of every node is also computed. A node whose clustering coefficient is greater than the threshold is added to the core protein set. Then we mark every neighbor node of core proteins with unique core label during picking and dropping. Thirdly, filtering processes are carried out to obtain the final complex set. Experimental results show that CA-ACO algorithm had great superiority in precision, recall and f-measure compared with the state-of-the-art methods such as ClusterONE, DPClus, MCODE and so on.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gavin, A.C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  Google Scholar 

  2. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Nat. Acad. Sci. U.S.A. 100, 12123–12128 (2003)

    Article  Google Scholar 

  3. Wang, J., Peng, X., Peng, W., Wu, F.X.: Dynamic protein interaction network construction and applications. Proteomics 14, 338–352 (2014)

    Article  Google Scholar 

  4. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2–28 (2003)

    Article  Google Scholar 

  5. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  6. Adamcsek, B., Palla, G., Farkas, I.J., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006)

    Article  Google Scholar 

  7. Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform. 7, 207–219 (2006)

    Article  Google Scholar 

  8. Li, M., Chen, J., Wang, J., Chen, G.: Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinform. 9, 398–413 (2008)

    Article  Google Scholar 

  9. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25, 1891–1897 (2009)

    Article  Google Scholar 

  10. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99, 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  11. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76, 175–181 (2000)

    Article  MathSciNet  Google Scholar 

  12. Li, M., Wang, J., Chen, J., Pan, Y.: Hierarchical organization of functional modules in weighted protein interaction networks using clustering coefficient. Bioinform. Res. Appl. 5542, 75–86 (2009)

    Article  Google Scholar 

  13. Wang, X., Li, L., Cheng, Y.: An overlapping module identification method in protein-protein interaction networks. BMC Bioinform. 13, S4 (2012)

    Article  Google Scholar 

  14. Leung, H.C., Xiang, Q., Yiu, S.M., Chin, F.Y.: Predicting protein complexes from PPI data: a core-attachment approach. J. Comput. Biol. 16, 133–144 (2009)

    Article  MathSciNet  Google Scholar 

  15. Wu, M., Li, X., Kwoh, C.K.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform. 10, 169–184 (2009)

    Article  Google Scholar 

  16. Leal, J.P., Enright, A., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins Struct. Funct. Bioinform. 54, 49–57 (2003)

    Article  Google Scholar 

  17. Van Dongen, S.M.: Graph clustering by flow simulation (2001)

    Google Scholar 

  18. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Meth. 9, 471–472 (2012)

    Article  Google Scholar 

  19. Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinform. 26, 1105–1111 (2010)

    Article  Google Scholar 

  20. Lei, X., Ding, Y., Hamido, F., Zhang, A.: Identification of dynamic protein complexes based on fruit fly optimization algorithm. Knowl. Based Syst. 105, 270–277 (2016)

    Article  Google Scholar 

  21. Leumer, E., Faieta, B.: Diversity and adaption in populations of clustering ants. In: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior: From Animal to Animals, pp. 499–508. MIT Press, Cambridge (1994)

    Google Scholar 

  22. Xenarios, L., Salwínski, L., Duan, X.J., Higney, P., Kim, S., Eisenberg, D.: DIP: the database of interaction proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

  23. Pu, S., Wong, J., Turner, B., Cho, E., Wodak, S.J.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res. 37, 825–831 (2009)

    Article  Google Scholar 

  24. Keretsu, S., Sarmah, R.: Weighted edge based clustering to identify protein complexes in protein–protein interaction networks incorporating gene expression profile. Comput. Biol. Chem. 65, 69–79 (2016)

    Article  Google Scholar 

  25. King, A.D., Pržulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004)

    Article  Google Scholar 

  26. Seçkiner, S.U., Eroglu, Y., Emrullah, M., Dereli, T.: Ant colony optimization for continuous functions by using novel pheromone updating. Appl. Math. Comput. 219, 4163–4175 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Wang, J., Li, M., Chen, J., Pan, Y.: A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. Comput. Biol. Bioinform. 8, 607–620 (2011)

    Google Scholar 

  28. Cao, B., Luo, J., Liang, C., Wang, S., Song, D.: MOEPGA: a novel method to detect protein complexes in yeast protein–protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm. Comput. Biol. Chem. 58, 173–181 (2015)

    Article  Google Scholar 

  29. Vlasblom, J., Wodak, S.J.: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinform. 10, 99 (2009)

    Article  Google Scholar 

  30. Dimitrakopoulosa, C., Theofilatosa, K., Pegkasb, A., Likothanassis, S., Mavroudi, S.: Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods. Artif. Intell. Med. 71, 62–69 (2016)

    Article  Google Scholar 

  31. Güldener, U., Münsterkötter, M., Oesterheld, M., Pagel, P., Ruepp, A., Mewes, H., et al.: MPact: the MIPS protein interaction resource on Yeast. Nucleic Acids Res. 34, 436–441 (2006)

    Article  Google Scholar 

  32. Krogan, N., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  Google Scholar 

  33. Zhang, Y., Lin, H., Yang, Z., Wang, J., Li, Y., Xu, B.: Protein complex prediction in large ontology attributed protein-protein interaction networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 729–741 (2013)

    Article  Google Scholar 

  34. Chin, C., Chen, S., Ho, C., Ko, M., Lin, C.: A hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles. BMC Bioinform. 11, S25 (2010)

    Article  Google Scholar 

  35. Wang, J., Peng, X., Li, M., Pan, Y.: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2), 301–312 (2013)

    Article  Google Scholar 

  36. Shen, X., Yi, L., Jiang, X., Zhao, Y., Hu, X., He, T., Yang, J.: Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods 110, 90–96 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, J., Lei, X., Guo, L., Tan, Y. (2018). ACO Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks. In: Tan, Y., Shi, Y., Tang, Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science(), vol 10941. Springer, Cham. https://doi.org/10.1007/978-3-319-93815-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93815-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93814-1

  • Online ISBN: 978-3-319-93815-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics