Advertisement

Sentiment Analysis in Polish Web-Political Discussions

  • Antoni SobkowiczEmail author
  • Marek Kozłowski
Conference paper
  • 327 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10930)

Abstract

The article presents analysis of Polish Internet political discussion forums, characterized by significant polarization and high levels of emotion. The study compares samples of discussions gathered from the Internet comments concerning the last Polish election candidates. The authors compare three dictionary based sentiment analysis methods (built using different sentiment lexicons) with two machine learning ones, and explore methods using word embeddings to enhance sentiment analysis using dictionary based algorithms. The best performing algorithm is giving results closely corresponding to human evaluations.

Keywords

Text classification Sentiment analysis Machine learning 

References

  1. 1.
    Baumeister, R.F., Bratslavsky, E., Finkenauer, C., Vohs, K.D.: Bad is stronger than good. Rev. Gen. Psychol. 5(4), 323 (2001)CrossRefGoogle Scholar
  2. 2.
    Bermingham, A., Smeaton, A.F.: On using twitter to monitor political sentiment and predict election results (2011)Google Scholar
  3. 3.
    Durant, K.T., Smith, M.D.: Mining sentiment classification from political web logs. In: Proceedings of Workshop on Web Mining and Web Usage Analysis of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (WebKDD-2006), Philadelphia, PA (2006)Google Scholar
  4. 4.
    Greene, W.H.: The econometric approach to efficiency analysis. In: The Measurement of Productive Efficiency and Productivity Growth, pp. 92–250 (2008)CrossRefGoogle Scholar
  5. 5.
    Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representations via global context and multiple word prototypes. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 873–882. Association for Computational Linguistics (2012)Google Scholar
  6. 6.
    Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50(1), 723–762 (2014)Google Scholar
  7. 7.
    MacKuen, M., Wolak, J., Keele, L., Marcus, G.E.: Civic engagements: resolute partisanship or reflective deliberation. Am. J. Polit. Sci. 54(2), 440–458 (2010)CrossRefGoogle Scholar
  8. 8.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  9. 9.
    Mullen, T., Malouf, R.: A preliminary investigation into sentiment analysis of informal political discourse. In: AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs, pp. 159–162 (2006)Google Scholar
  10. 10.
    Mutz, D.C.: Facilitating communication across lines of political difference: the role of mass media. In: American Political Science Association, vol. 95, pp. 97–114. Cambridge Univ Press (2001)Google Scholar
  11. 11.
    Paltoglou, G., Gobron, S., Skowron, M., Thelwall, M., Thalmann, D.: Sentiment analysis of informal textual communication in cyberspace. In: Proceedings of the Engage 2010, Springer LNCS State-of-the-Art Survey, pp. 13–25 (2010)Google Scholar
  12. 12.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  13. 13.
    Peeters, G., Czapinski, J.: Positive-negative asymmetry in evaluations: the distinction between affective and informational negativity effects. Eur. Rev. Soc. Psychol. 1(1), 33–60 (1990)CrossRefGoogle Scholar
  14. 14.
    Ptaszynski, M., Masui, F., Rzepka, R., Araki, K.: Emotive or non-emotive: that is the question. In: ACL 2014, p. 59 (2014)Google Scholar
  15. 15.
    Rainie, L., Horrigan, J.: Election 2006 online (2007)Google Scholar
  16. 16.
    Russell, S., Norvig, P.: Artificial intelligence: a modern approach (1995)Google Scholar
  17. 17.
    Sobkowicz, A.: Automatic sentiment analysis in polish language. In: Ryżko, D., Gawrysiak, P., Kryszkiewicz, M., Rybiński, H. (eds.) Machine Intelligence and Big Data in Industry. SBD, vol. 19, pp. 3–10. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30315-4_1CrossRefGoogle Scholar
  18. 18.
    Sobkowicz, P., Sobkowicz, A.: Two-year study of emotion and communication patterns in a highly polarized political discussion forum. Soc. Sci. Comput. Rev. 30(4), 448–469 (2012)CrossRefGoogle Scholar
  19. 19.
    Stieglitz, S., Dang-Xuan, L.: Political communication and influence through microblogging-an empirical analysis of sentiment in twitter messages and retweet behavior. In: 2012 45th Hawaii International Conference on System Science (HICSS), pp. 3500–3509. IEEE (2012)Google Scholar
  20. 20.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Tech. 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  21. 21.
    Wojcieszak, M.: “Don’t talk to me”: effects of ideologically homogeneous online groups and politically dissimilar offline ties on extremism. New Media Soc. 12, 637–655 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Information Processing InstituteWarsawPoland
  2. 2.Warsaw University of TechnologyWarsawPoland

Personalised recommendations