Advertisement

A Connectionist Model of Reading with Error Correction Properties

  • Max Raphael Sobroza MarquesEmail author
  • Xiaoran Jiang
  • Olivier Dufor
  • Claude Berrou
  • Deok-Hee Kim-Dufor
Conference paper
  • 307 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10930)

Abstract

Recent models of associative long term memory (LTM) have emerged in the field of neuro-inspired computing. These models have interesting properties of error correction, robustness, storage capacity and retrieval performance. In this context, we propose a connectionist model of written word recognition with correction properties, using associative memories based on neural cliques. Similarly to what occurs in human language, the model takes advantage of the combination of phonological and orthographic information to increase the retrieval performance in error cases. Therefore, the proposed architecture and principles of this work could be applied to other neuro-inspired problems that involve multimodal processing, in particular for language applications.

Keywords

Connectionist model Reading model Word error correction Associative memory Multimodal neural network 

References

  1. Aboudib, A., Gripon, V., Jiang, X.: A study of retrieval algorithms of sparse messages in networks of neural cliques. In: COGNITIVE 2014: The 6th International Conference on Advanced Cognitive Technologies and Applications (2014)Google Scholar
  2. Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R.E.L., Leite, R.E.P., Lent, R., Herculano-Houzel, S.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 5, 532–541 (2009)CrossRefGoogle Scholar
  3. Berrou, C., Dufor, O., Gripon, V., Xiaoran, J.: Information, noise, coding, modulation: what about the brain? In: 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC) (2014)Google Scholar
  4. Boguslawski, B., Gripon, V., Seguin, F., Heitzmann, F.: Huffman coding for storing non-uniformly distributed messages in networks of neural cliques. In: 28th Conference on Artificial Intelligence, vol. 1. AAAI (2014)Google Scholar
  5. Christianson, K., Johnson, R., Rayner, K.: Letter transpositions within and across morphemes. J. Exp. Psychol. Learn. Mem. Cogn. 31(6), 1327 (2005)CrossRefGoogle Scholar
  6. Coltheart, M., Rastle, K., Perry, C., Langdon, R., Ziegler, J.: DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 108(1), 204 (2001)CrossRefGoogle Scholar
  7. Grainger, J., Granier, J., Farioli, F., Van Assche, E., Van Heuven, W.: Letter position information and printed word perception: the relative-position priming constraint. J. Exp. Psychol. Hum. Percep. Perform. 32(4), 865 (2006)CrossRefGoogle Scholar
  8. Grainger, J., Whitney, C.: Does the huamn mnid raed wrods as a wlohe? Trends Cogn. Sci. 8(2), 58–59 (2004)CrossRefGoogle Scholar
  9. Gripon, V., Berrou, C.: Sparse neural networks with large learning diversity. IEEE Trans. Neural Netw. 22(7), 1087–1096 (2011)CrossRefGoogle Scholar
  10. Gripon, V., Jiang, X.: Mémoires associatives pour observations floues. In: Proceedings of XXIV-th Gretsi Seminar (2013)Google Scholar
  11. Jiang, X., Gripon, V., Berrou, C., Rabbat, M.: Storing sequences in binary tournament-based neural networks. IEEE Trans. Neural Netw. Learn. Syst. 27(5), 913–925 (2015a)MathSciNetCrossRefGoogle Scholar
  12. Jiang, X., Sobroza Marques, M.R., Kirsch, P.-J., Berrou, C.: Improved retrieval for challenging scenarios in clique-based neural networks. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 400–414. Springer, Cham (2015b).  https://doi.org/10.1007/978-3-319-19258-1_34CrossRefGoogle Scholar
  13. Leaver, A., Van Lare, J., Zielinski, B., Halpern, A., Rauschecker, J.: Brain activation during anticipation of sound sequences. J. Neurosci. 29(8), 2477–2485 (2009)CrossRefGoogle Scholar
  14. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)MathSciNetCrossRefGoogle Scholar
  15. Mountcastle, V.: The columnar organization of the neocortex. Brain 120(4), 701–722 (1997)CrossRefGoogle Scholar
  16. Perea, M., Carreiras, M.: Do transposed-letter similarity effects occur at a prelexical phonological level? Q. J. Exp. Psychol. 59(9), 1600–1613 (2006)CrossRefGoogle Scholar
  17. Perea, M., Lupker, S., Kinoshita, S.: Transposed-letter confusability effects in masked form priming. Masked Priming: State of the Art, 97–120 (2003)Google Scholar
  18. Plaut, D.: Connectionist approaches to reading. The Science of Reading: A Handbook, pp. 24–38 (2005)Google Scholar
  19. Rayner, K., White, S., Johnson, R., Liversedge, S.: Raeding wrods with jubmled lettres there is a cost. Psychol. Sci. 17(3), 192–193 (2006)CrossRefGoogle Scholar
  20. Schacter, D.L., Buckner, R.L.: Priming and the brain. J. Neuron 20(2), 185–195 (1998)CrossRefGoogle Scholar
  21. Schoonbaert, S., Grainger, J.: Letter position coding in printed word perception: effects of repeated and transposed letters. Lang. Cogn. Process. 19(3), 333–367 (2004)CrossRefGoogle Scholar
  22. Starzyk, J., He, H., et al.: Spatio-temporal memories for machine learning: a long-term memory organization. IEEE Trans. Neural Netw. 20(5), 768–780 (2009)CrossRefGoogle Scholar
  23. Squire, L.R.: Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82(3), 171–177 (2004)CrossRefGoogle Scholar
  24. Tulving, E., Schacter, D.L.: Priming and human memory systems. JSTOR (1990)CrossRefGoogle Scholar
  25. Thivierge, J., Marcus, G.: The topographic brain: from neural connectivity to cognition. Trends Neurosci. 30(6), 251–259 (2007)CrossRefGoogle Scholar
  26. Van den Heuvel, M., Sporns, O.: Network hubs in the human brain. Trends Cogn. Sci. 17(12), 683–696 (2013)CrossRefGoogle Scholar
  27. Van Orden, G.: A rows is a rose: spelling, sound, and reading. Mem. Cogn. 15(3), 181–198 (1987)CrossRefGoogle Scholar
  28. Wang, W., Subagdja, B., Tan, A., Starzyk, J., et al.: Neural modeling of episodic memory: encoding, retrieval, and forgetting. IEEE Trans. Neural Netw. Learn. Syst. 23(10), 1574–1586 (2012)CrossRefGoogle Scholar
  29. Welvaert, M., Farioli, F., Grainger, J.: Graded effects of number of inserted letters in superset priming. Exp. Psychol. 55(1), 54–63 (2008)CrossRefGoogle Scholar
  30. Whitney, C.: How the brain encodes the order of letters in a printed word: the seriol model and selective literature review. Psychon. Bull. Rev. 8(2), 221–243 (2001)CrossRefGoogle Scholar
  31. Willshaw, D., Buneman, O., Longuet-Higgins, H.: Non-holographic associative memory. Nature (1969)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Max Raphael Sobroza Marques
    • 1
    Email author
  • Xiaoran Jiang
    • 2
  • Olivier Dufor
    • 1
  • Claude Berrou
    • 1
  • Deok-Hee Kim-Dufor
    • 1
  1. 1.Institut Mines Télécom Atlantique, Département d’ElectroniqueTechnopôle Brest-IroiseBrestFrance
  2. 2.Inria Rennes Bretagne AtlantiqueRennesFrance

Personalised recommendations