Advertisement

Events Extractor for Polish Based on Semantics-Driven Extraction Templates

  • Jolanta CybulkaEmail author
  • Jakub Dutkiewicz
Conference paper
  • 284 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10930)

Abstract

The paper presents a certain paradigm of extracting events from Polish free texts. We call it semantics-driven because the extraction templates are generated from the specification of a domain knowledge that is expressed in the form of a well-founded ontology. The considered method is equipped with the supporting tool that has two components: the first one is domain-dependent and serves to generate extraction templates on the basis of an ontology. The second part is linguistic and domain-independent and may be used whenever templates are supplied, not necessarily via the generator. We checked the quality performance of our generator on a basis of a case study.

Keywords

Event extraction Well-founded ontology Semantics-driven event extraction for Polish 

References

  1. 1.
    Cybulka, J.: The OWL version of c.DnSPL ontology. http://users.man.poznan.pl/jolac/PPBW-22-07-2015-inferred-new.owl (20 MB). Accessed 07 July 2017
  2. 2.
    Cybulka, J.: Supporting the creation of some class of well-founded OWL-DL ontologies. Comput. Methods Sci. Technol. 23(5), 57–64 (2017)CrossRefGoogle Scholar
  3. 3.
    Dutkiewicz, J., Falkowski, M., Nowak, M., Jędrzejek, C.: Semantic extraction with use of frames. In: Przepiórkowski, A., Ogrodniczuk, M. (eds.) NLP 2014. LNCS (LNAI), vol. 8686, pp. 208–215. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10888-9_22CrossRefGoogle Scholar
  4. 4.
    Gangemi, A., Lehmann, J., Catenacci, C.: Norms and plans as unification criteria for social collectives. http://drops.dagstuhl.de/opus/volltexte/2007/910. Accessed 07 July 2017
  5. 5.
    Jaworski, W., Przepiórkowski, A.: Syntactic approximation of semantic roles. In: Przepiórkowski, A., Ogrodniczuk, M. (eds.) NLP 2014. LNCS (LNAI), vol. 8686, pp. 193–201. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10888-9_20CrossRefGoogle Scholar
  6. 6.
    McCrae, J.P., et al.: The open linguistics working group: developing the linguistic linked open data cloud. In: 10th International Conference on Language Resources and Evaluation, Portorož, Slovenia, pp. 23–28, May 2016. http://www.lrec-conf.org/proceedings/lrec2016/pdf/851_Paper.pdf. Accessed 5 July 2017
  7. 7.
    Palmer, M.: VerbNet A Class-Based Verb Lexicon. http://verbs.colorado.edu/~mpalmer/projects/verbnet.html. Accessed 05 July 2017
  8. 8.
    Piasecki, M.: Polish tagger TaKIPI: rule based construction and optimisation. TASK Q. 11(1–2), 151–167 (2007)Google Scholar
  9. 9.
    Piskorski, J., Yangaber, R.: Information extraction: past, present and future. In: Poibeau, T., et al. (eds.) Multi-source, Multilingual Information Extraction and Summarization. NLP, pp. 23–49. Springer, Cham (2013).  https://doi.org/10.1007/978-3-642-28569-1_2. ISBN 978-3-642-28568-4CrossRefGoogle Scholar
  10. 10.
    Proceedings of the 4th Conference on Message Understanding, MUC4 1992, McLean, Virginia. Association for Computational Linguistics, USA (1992). ISBN 1-55860-273-9Google Scholar
  11. 11.
    Przepiórkowski, A.: Powierzchniowe przetwarzanie języka polskiego. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2008). (in Polish)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Poznań University of TechnologyPoznańPoland

Personalised recommendations