Methods of Linking Linguistic Resources for Semantic Role Labeling

  • Balázs IndigEmail author
  • Márton Miháltz
  • András Simonyi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10930)


This paper presents the process of enriching the verb frame database of a Hungarian natural language parser to enable the assignment of semantic roles. We accomplished this by linking the parser’s verb frame database to existing linguistic resources such as VerbNet and WordNet, and automatically transferring back semantic knowledge. We developed OWL ontologies that map the various constraint description formalisms of the linked resources and employed a logical reasoning device to facilitate the linking procedure. We present results and discuss the challenges and pitfalls that arose from this undertaking. We also compare our rule-based approach with that of using a state-of-the-art English semantic role labeler pipeline for the thematic role transferring task.


Linked resources Ontology Verb argument frames 



An earlier, shorter version of this paper, in which the evaluation was based on a substantially smaller gold standard and a smaller set of frames (excluding complements), was presented at the 7th Language & Technology Conference in Poznań in 2015 [29]. Another paper detailing the publicly available underlying ontology was presented at LREC 2016 in Protorož [30].


  1. 1.
    Palmer, M., Gildea, D., Xue, N.: Semantic role labeling. Synth. Lect. Hum. Lang. Technol. 3(1), 1–103 (2010)CrossRefGoogle Scholar
  2. 2.
    Prószéky, G., Indig, B., Miháltz, M., Sass, B.: Egy pszicholingvisztikai indíttatású számítógépes nyelvfeldolgozási modell felé. In: XI. Magyar Számítógépes Nyelvészeti Konferencia, Szeged, 2014, pp. 79–87 (2014)Google Scholar
  3. 3.
    Sass, B.: Egy kereslet-kínálat elvű elemző működése és a koordináció kezelésének módszere. In: XI. Magyar Számítógépes Nyelvészeti Konferencia, Szeged, 2015, pp. 309–311 (2015)Google Scholar
  4. 4.
    Pléh, C.: Formal connexity and pragmatic cohesion in anaphora interpretation. In: Text and Discourse Connectedness. In: Proceedings of the Conference on Connexity and Coherance, Urbino, pp. 137–52 (1989)CrossRefGoogle Scholar
  5. 5.
    Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford University Press, Oxford (2010)Google Scholar
  6. 6.
    Prószéky, G., Tihanyi, L.: MetaMorpho: a pattern-based machine translation system. In: Proceedings of the 24th Translating and the Computer Conference, pp. 19–24 (2002)Google Scholar
  7. 7.
    Prószéky, G., Indig, B.: Magyar szövegek pszicholingvisztikai indíttatású elemzése számítógéppel. Alkalmazott Nyelvtudomány XV(1–2), 29–44 (2015)Google Scholar
  8. 8.
    Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb lexicon. Ph.D. thesis, University of Pennsylvania (2005)Google Scholar
  9. 9.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  10. 10.
    Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge representation and reasoning system. Semant. Web J. 3(3), 267–277 (2012)Google Scholar
  11. 11.
    Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Comput. Linguist. 28(3), 245–288 (2002)CrossRefGoogle Scholar
  12. 12.
    Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 shared task: semantic role labeling. In: Proceedings of the Ninth Conference on Computational Natural Language Learning, CoNLL 2005, pp. 152–164. ACL, Stroudsburg (2005)Google Scholar
  13. 13.
    Ku, L.W., Virk, S.M., Lee, Y.H.: A dual-layer semantic role labeling system. In: ACL-IJCNLP 2015, p. 49 (2015)Google Scholar
  14. 14.
    Loper, E., Yi, S.T., Palmer, M.: Combining lexical resources: mapping between PropBank and VerbNet. In: Proceedings of the 7th International Workshop on Computational Linguistics, Tilburg (2007)Google Scholar
  15. 15.
    Gurevych, I., Eckle-Kohler, J., Hartmann, S., Matuschek, M., Meyer, C.M., Wirth, C.: UBY - a large-scale unified lexical-semantic resource based on LMF. In: Proceedings of the 13th Conference of the European Chapter of the ACL (EACL 2012), pp. 580–590, April 2012Google Scholar
  16. 16.
    Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Schmachtenberg, M., Bizer, C., Jentzsch, A., Cyganiak, R.: Linking open data cloud diagram 2014 (2014).
  18. 18.
    Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation. University of Chicago Press, Chicago (1993)Google Scholar
  19. 19.
    Sass, B.: A unified method for extracting simple and multiword verbs with valence information. In: Proceedings of RANLP 2009, Borovec, Bulgaria, pp. 399–403 (2009)Google Scholar
  20. 20.
    Sass, B.: The verb argument browser. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2008. LNCS (LNAI), vol. 5246, pp. 187–192. Springer, Heidelberg (2008). Scholar
  21. 21.
    Váradi, T.: The Hungarian National Corpus. In: Proceedings of the Second International Conference on Language Resources and Evaluation, Las Palmas, pp. 385–389 (2002)Google Scholar
  22. 22.
    Vossen, P., Bloksma, L., Rodriguez, H., Climent, S., Calzolari, N., Roventini, A., Bertagna, F., Alonge, A., Peters, W.: The EuroWordNet base concepts and top ontology. Technical report, EuroWordNet project (1998)Google Scholar
  23. 23.
    Liebig, T., Luther, M., Noppens, O., Wessel, M.: OWLlink. Semant. Web Interoper. Usability Appl. 2(1), 23–32 (2011)Google Scholar
  24. 24.
    Roth, M., Lapata, M.: Neural semantic role labeling with dependency path embeddings. In: Proceedings of ACL 2016, Berlin, pp. 1192–1202 (2016)Google Scholar
  25. 25.
    Roth, M., Lapata, M.: PathLSTM, GitHub repository (2017).
  26. 26.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of ACL 2014: System Demonstrations, pp. 55–60 (2014)Google Scholar
  27. 27.
    Bohnet, B.: Very high accuracy and fast dependency parsing is not a contradiction. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 89–97. Association for Computational Linguistics (2010)Google Scholar
  28. 28.
    Björkelund, A., Hafdell, L., Nugues, P.: Multilingual semantic role labeling. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning: Shared Task, pp. 43–48. Association for Computational Linguistics (2009)Google Scholar
  29. 29.
    Indig, B., Miháltz, M., Simonyi, A.: Exploiting linked linguistic resources for semantic role labeling. In: 7th Language and Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, pp. 140–144. Uniwersytet im. Adama Mickiewicza w Poznaniu, Poznań (2015)Google Scholar
  30. 30.
    Indig, B., Miháltz, M., Simonyi, A.: Mapping ontologies using ontologies: Cross-lingual semantic role information transfer. In: Chair, N.C.C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association (ELRA), Paris, pp. 2425–2430, May 2016Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Balázs Indig
    • 1
    • 2
    Email author
  • Márton Miháltz
    • 2
  • András Simonyi
    • 2
  1. 1.Pázmány Péter Catholic University, Faculty of Information Technology and BionicsBudapestHungary
  2. 2.MTA-PPKE Hungarian Language Technology Research GroupBudapestHungary

Personalised recommendations