Skip to main content

Mathematical and Technological Computability

  • Chapter
  • First Online:
Book cover Technology and Mathematics

Part of the book series: Philosophy of Engineering and Technology ((POET,volume 30))

Abstract

The study of algorithms, computations, and computability offers a major contact point between mathematics, technology, and philosophy. This chapter begins with a brief history of computations and the technical means used to support them. Summary accounts are given of two scholarly developments that provided much of the intellectual background for modern computation: attempts to express all reasoning as mathematics and attempts to reduce all of mathematics to simple, rule-bound symbol manipulation. This is followed by a discussion of the Turing machine, including a detailed explanation of why it can be said to cover all systems of rule-bound symbol manipulation. The universal Turing machine and its philosophical implications are also discussed. A two-dimensional classificatory scheme is offered for proposed constructions of computing devices with stronger computing powers than a Turing machine. This categorization serves to highlight the weaknesses of current proposals for such devices. In conclusion, it is emphasized that computation has to be understood as an intentional input-output process with high demands on reliability and lucidity. The study of computations and algorithms has much to learn from other studies of intentional human action, not least in the philosophy of technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word “calculation” is commonly used for elementary operations, and “computation” for more advanced and complex ones. There is no sharp delimitation in usage between the two terms.

  2. 2.

    For instance, the following rule can be used to multiply two two-digit numbers that both end in 5 and whose first digits are either both odd or both even: Add the first digits. Divide by 2. Add their product. Write 25 afterwards. In this case, (3 + 7)∕2 + (3 × 7) = 26, so 35 × 75 = 2625. (I.e., (10a + 5)(10b + 5) = ((a + b)∕2 + ab) × 100 + 25.)

  3. 3.

    The set of problems that can be solved with a method of calculation will have to be mathematically “natural”. For instance, the above instruction can also be used to make each of the additions 332666+1, 332665+2, 332664+3, etc., but such an ad hoc collection of problems does not make it a calculation.

  4. 4.

    At the time of writing, it is not known if the procedure for finding perfect numbers sketched out here is effective or not. If there are infinitely many perfect numbers, then the procedure is effective, otherwise not.

  5. 5.

    Gandy (1988, p. 57) showed that the functions computable with the analytical engine “are precisely those which are Turing computable.”

  6. 6.

    Lovelace said (p. 119) that she did not know “[w]hether the inventor of this engine had any such views in his mind whilst working out the invention.”

  7. 7.

    One of them was Ada Lovelace’s mother, Lady Byron (1792–1869), who described it as a “thinking machine”. (Quoted in Swade 2011a, p. 246.)

  8. 8.

    Forteza (1998). Cf. Hamilton (1978).

  9. 9.

    See also de Jong (1986) and MacDonald Ross (2007).

  10. 10.

    Quo facto, quando orientur controversiae, non magis disputatione opus erit inter duos philosophos, quam inter duos computistas. Sufficiet enim calamos in manus sumere sedereque ad abacos, et sibi mutuo (accito si placet amico) dicere: calculemus.” (Leibniz 1890, vol. 7, p. 200).

  11. 11.

    Much later, infinitesimals were introduced in nonstandard analysis, but now rigorously defined. This was largely the work of Abraham Robinson (1918–1974).

  12. 12.

    This term is usually attributed to the German mathematician Felix Klein (1849–1925) who used it in a speech in 1895 (Klein 1895).

  13. 13.

    “L’idée vague de continuité, que nous devions à l’intuition, s’est résolue en un système compliqué d’inégalités portant sur des nombres entiers. Par là les difficultés provenant des passage à la limite, ou de la considération des infiniments petits, se sont trouvées définitivement éclaircies. Il ne reste plus aujourd’hui en Analyse que des nombres entiers ou des systèmes finis ou infinis de nombres entiers, reliés entre eux par un réseau de relations d’égalité ou d’inégalité. Les Mathématiques, comme on l’a dit, se sont arithmétisées.” (Poincaré 1902, p. 120).

  14. 14.

    This representability of symbols as numbers was used in masterly fashion by Kurt Gödel (1931) when he assigned a unique number to each sentence that is expressible in a logical language (Gödel numbering).

  15. 15.

    “Ich betrachte die Arithmetik, oder die Lehre von den reinen Zahlen, als eine auf rein psychologischen Thatsachen aufgebaute Methode, durch die die folgerichtige Anwendung eines Zeichensystems (nämlich der Zahlen) von unbegrenzter Ausdehnung und unbegrenzter Möglichkeit der Verfeinerung gelehrt wird. Die Arithmetik untersucht namentlich, welche verschiedene Verbindungsweisen dieser Zeichen (Rechnungsoperationen) zu demselben Endergebniss führen.”

  16. 16.

    “Die Grundsätze sollen das von der Mathematik zu verarbeitende empirische Material vollständig umfassen, so daß man nach ihrer Aufstellung auf die Sinneswahrnehmungen nicht mehr zurückzugehen braucht” (Pasch 1882, p. 17, quoted from Contro (1976) p. 286).

  17. 17.

    “Wir denken drei verschiedene Systeme von Dingen: die Dinge des ersten Systems nennen wir Punkte und bezeichnen sie mit A, B, C, …; die Dinge des zweiten Systems nennen wir Gerade und bezeichnen sie mit a, b, c, …; die Dinge des dritten Systems nennen wir Ebenen und bezeichnen sie mit α, β, γ, ……. Wir denken die Punkte, Geraden, Ebenen in gewissen gegenseitigen Beziehungen und bezeichnen diese Beziehungen durch Worte wie “liegen”, “zwischen”, “parallel”, “kongruent”, “stetig”; die genaue und vollständige Beschreibung dieser Beziehungen erfolgt durch die Axiome der Geometrie” (Hilbert 1899, p. 2).

  18. 18.

    “Dieser geschilderten Auffassung der Geometrie lege ich deshalb besondere Bedeutung bei, weil es mir ohne sie unmöglich gewesen wäre, die Relativitätstheorie aufzustellen” (Einstein 1921, p. 6).

  19. 19.

    Arguably, this was the realization of Ada Lovelace’s above-mentioned “science of operations” that could apply to “letters or any other general symbols” as well as numbers (Lovelace [1843] 1989, pp. 117 and 144).

  20. 20.

    “naturgemäß und konsequent…den Zahlzeichen und den Buchstaben in der Algebra gleichstellen und ebenfalls als Zeichen auffassen, die an sich nichts bedeuten, sondern nur Bausteine für die idealen Aussagen sind”, “nur Objekte für die Anwendung unserer Regeln” (Hilbert 1928, p. 8).

  21. 21.

    More precisely: a deductive system, i.e. the combination of a set of axioms and a set of rules for making derivations based on them.

  22. 22.

    “ein Verfahren”. Hilbert and Ackermann (1938), p. 91.

  23. 23.

    “das Hauptproblem der mathematischen Logik”, Hilbert and Ackermann (1938), p. 90.

  24. 24.

    In many accounts of Turing’s work, this analytical work is not adequately described. Robin Gandy (1919–1995), who was Turing’s graduate student, rightly called it a “paradigm of philosophical analysis” (Gandy 1988, p. 86).

  25. 25.

    See for instance Turing (1937a, p. 231, [1948] 2004, p. 9), Cleland (2002, p. 166), Israel (2002, p. 196), and Sieg (1997, pp. 171–172, 2002, pp. 399–400). Misunderstandings on this are not uncommon, for instance Arkoudas (2008, p. 463) claims that “the term ‘algorithm’ has no connotations involving idealized human computists” and that Turing just “referred to human computers as a means of analogy when he first introduced Turing machines (e.g., comparing the state of the machine to a human’s ‘state of mind,’ etc.)”. A careful reading of Turing’s 1936–7 article will show that Arkoudas’s interpretation cannot be borne out by the textual evidence.

  26. 26.

    Turing still used the word “computer” in this sense a decade later, see Turing ([1947] 1986, p. 116) Gandy (1988, p. 81) proposed that we use “computer” for a computing machine and “computor” for a computing human. Some authors have adopted this practice, e.g. Sieg (1994). However, the difference between the two spellings is easily overlooked. To make the difference more easily noticeable, I propose that we revive the word “computist” for a human performing calculations.

  27. 27.

    In this example, there are in fact three symbols, since the empty space and 0 are not treated in the same way, as can be seen from rules 1 and 18 in Textbox 9.2. It is perfectly feasible to use only two symbols; we can for instance replace each symbol space with two adjacent symbol spaces such that 00 represents an empty space, 01 represents 0 and 11 represents 1. See Sect. 9.5.2.

  28. 28.

    Halting is dealt with in different ways in different versions of Turing machines. A common construction is to let there be a combination of a state and an accessed symbol for which there is no instruction. When the computist arrives at that combination (s)he is assumed to halt since she has no instruction on how to proceed.

  29. 29.

    Cf. Section 9.2.1. This term was apparently introduced by Alonzo Church (1936).

  30. 30.

    This argument presupposes that there is only a finite number of different positions that a symbol can have within a symbol space. This is a reasonable assumption, given the function of symbol spaces, as explained above.

  31. 31.

    One aspect of this priority for simplicity is that each operation is assumed to affect only a minimal part of the tape. This feature can be described as a locality condition or, better, a set of locality conditions for reading, writing, and moving (Sieg 2009, pp. 584–587).

  32. 32.

    Based on this omission in Turing’s text, Copeland (1998) claims that Turing machines can compute Turing-incomputable functions, namely if they perform infinitely many operations in finite time.

  33. 33.

    The option of erasing a symbol to replace it by a blank square was not included in Turing’s account, and it does not either seem to have had any role in later versions of the Turing machine.

  34. 34.

    As we saw above, Turing argued that the process could be so constructed that only one symbol at a time is observed. Consequently, “symbols” can be replaced by “symbol” in this statement. Cf. Turing (1937a), pp. 231–232, 251 and 253–254.

  35. 35.

    Cf. Hofstadter (1979), p. 562.

  36. 36.

    Cf. Turing ([1947] 1986, p. 107, 1950, p. 436).

  37. 37.

    Several other equivalent characterizations have been added to the list, first of them Emil Post’s (1936) proposal, which had some elements in common with Turing’s but was conceived independently. As clarified by Soare (1996, p. 300), Post’s ideas were much less developed than those presented by Turing.

  38. 38.

    He wrote later that he was “completely convinced only by Turing’s paper”. (Letter from Gödel to Georg Kreisel, May 1, 1968, quoted by Sieg (1994, p. 88)).

  39. 39.

    The reference about the necessity of proving preliminary theorems refers to a technicality clarified by Sieg (1994, p. 112).

  40. 40.

    See also Gödel (1958).

  41. 41.

    According to one estimate, the universe can register up to 1090 bits (Lloyd 2002). Obviously, the practical limitations for a computing device ever to be built are much stricter.

  42. 42.

    Charles Babbage put much effort into making his computing machines operate by switching reliably between discrete states (Swade 2011b, pp. 67–70).

  43. 43.

    Cf. Smith (2006).

References

  • Arkoudas, K. (2008). Computation, hypercomputation, and physical science. Journal of Applied Logic, 6, 461–475.

    Article  Google Scholar 

  • Barrett, L., & Connell, M. (2005). Jevons and the logic ‘piano’. The Rutherford Journal, 1. http://www.rutherfordjournal.org

  • Blake, R. M. (1926). The paradox of temporal process. Journal of Philosophy, 23(24), 645–654.

    Article  Google Scholar 

  • Blumenthal, O. (1935). Lebensgeschichte. In D. Hilbert (Ed.), Gesammelte Abhandlungen (Vol. 3, pp. 388–429). Berlin: Springer.

    Google Scholar 

  • Boole, G. (1854). The laws of thought. London: Walton and Maberly.

    Google Scholar 

  • Button, T. (2009). SAD computers and two versions of the Church-Turing thesis. British Journal for the Philosophy of Science, 60(4), 765–792.

    Article  Google Scholar 

  • Chabert, J.-L. (Ed.). (1999). A history of algorithms: From the pebble to the microchip. New York: Springer Science & Business Media.

    Google Scholar 

  • Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2), 345–363.

    Article  Google Scholar 

  • Church, A. (1937). [Review of] A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Journal of Symbolic Logic, 2(1), 42–43.

    Google Scholar 

  • Cleland, C. E. (2002). On effective procedures. Minds and Machines, 12(2), 159–179.

    Article  Google Scholar 

  • Contro, W. S. (1976). Von Pasch zu Hilbert. Archive for History of exact Sciences, 15(3), 283–295.

    Article  Google Scholar 

  • Copeland, B. J. (1998). Even Turing machines can compute uncomputable functions. In C. S. Calude, J. Casti, & M. J. Dinneen (Eds.), Unconventional models of computation (pp. 150–164). Singapore: Springer.

    Google Scholar 

  • Cotogno, P. (2003). Hypercomputation and the physical Church-Turing thesis. British Journal for the Philosophy of Science, 54(2), 181–223.

    Article  Google Scholar 

  • Cram, D. (1985). Universal language schemes in 17th-century Britain. Histoire Epistémologie Langage, 7(2), 35–44.

    Article  Google Scholar 

  • Davis, M. (2006). The Church-Turing thesis. Consensus and opposition. In A. Beckmann, U. Berger, B. Löwe, & J. V. Tucker (Eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Proceedings, Swansea, June 30–July 5, 2006 (Lecture notes in computer science, Vol. 3988, pp. 125–132). Springer.

    Google Scholar 

  • de Jong, W. R. (1986). Hobbes’s logic: Language and scientific method. History and Philosophy of Logic, 7(2), 123–142.

    Article  Google Scholar 

  • Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society A, 400, 97–117.

    Article  Google Scholar 

  • Edwards, C. H. (1979). The historical development of the calculus. New York: Springer.

    Book  Google Scholar 

  • Einstein, A. (1921). Geometrie und Erfahrung. Berlin: Springer.

    Book  Google Scholar 

  • Euclid. (1939). Elements. In I. Thomas (Ed. and Transl.) Greek mathematical works, volume I. Thales to Euclid (Loeb classical library, Vol. 335). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Forteza, B. (1998). La influencia de Francisco Suárez sobre Thomas Hobbes. Convivum, 11, 40–79.

    Google Scholar 

  • Frege, G. (1879). Begriffsschrift, eine der aritmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Louis Nebert.

    Google Scholar 

  • Freudenthal, H. (1966). The main trends in the foundations of geometry in the 19th century. Studies in Logic and the Foundations of Mathematics, 44, 613–621.

    Article  Google Scholar 

  • Friend, M. (2010). Boole: From calculating numbers to calculating thoughts. In F. Ferreira, B. Löwe, E. Mayordomo, & L. M. Gomes (Eds.) Programs, proofs, processes (Lecture notes in computer science, Vol. 6158, pp. 172–179). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H. J. Keisler, & K. Kunen (Eds.), The Kleene symposium (pp. 123–148). Amsterdam: North-Holland Publishing Company.

    Chapter  Google Scholar 

  • Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The universal Turing machine: A half-century survey (pp. 55–111). Oxford: Oxford University Press.

    Google Scholar 

  • Gent, I. P., & Walsh, T. (2000). Satisfiability in the year 2000. Journal of Automated Reasoning, 24(1–2), 1–3.

    Article  Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173–198.

    Article  Google Scholar 

  • Gödel, K. (1958). Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica, 12, 280–287.

    Article  Google Scholar 

  • Gödel, K. (1964). Postscriptum. In M. Davis (Ed.), The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions (pp. 71–73). Hewlett: Raven Press.

    Google Scholar 

  • Grattan-Guinness, I. (1990). Work for the hairdressers: The production of de Prony’s logarithmic and trigonometric tables. Annals of the History of Computing, 12(3), 177–185.

    Article  Google Scholar 

  • Grcar, J. F. (2013). Errors and corrections in mathematics literature. Notices of the AMS, 60(4), 418–425.

    Article  Google Scholar 

  • Grier, D. A. (2005) When computers were human. Princeton: Princeton University Press.

    Google Scholar 

  • Hagar, A., & Korolev, A. (2007). Quantum hypercomputation–hype or computation? Philosophy of Science, 74, 347–363.

    Article  Google Scholar 

  • Hamilton, J. J. (1978). Hobbes’s study and the Hardwick library. Journal of the History of Philosophy, 16 (4), 445–453.

    Article  Google Scholar 

  • Hansson, S. O. (1985). Church’s thesis as an empirical hypothesis. International Logic Review, 16 (2), 96–101.

    Google Scholar 

  • Hardy, G. H. (1929). Mathematical proof. Mind, 38(149), 1–25.

    Article  Google Scholar 

  • von Helmholtz, H. (1887). Zählen und Messen, erkenntnisstheoretisch betrachtet. In Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet (pp. 17–52). Leipzig: Fues.

    Google Scholar 

  • Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner.

    Google Scholar 

  • Hilbert, D. (1928). Die Grundlagen der Mathematik. Hamburger Mathematische Einzelschriften (Heft 5). Wiesbaden: Springer.

    Book  Google Scholar 

  • Hilbert, D., & Ackermann, W. (1938). Grundzüge der theoretischen Logik (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Hobbes, T. ([1651] 1839). The English works of Thomas Hobbes of Malmesbury (Vol. 3, Leivathan, W. Molesworth, Ed.). London: Bohn.

    Google Scholar 

  • Hofstadter, D. R. (1979). Gödel, Escher, Bach: An eternal golden braid. New York: Basic Books.

    Google Scholar 

  • Hogarth, M. (1994). Non-Turing computers and non-Turing computability. PSA, 1994(1), 126–138.

    Google Scholar 

  • Israel, D. (2002). Reflections on Gödel’s and Gandy’s reflections on Turing’s thesis. Minds and Machines, 12(2), 181–201.

    Article  Google Scholar 

  • Jahnke, H. N., & Otte, M. (1981). Origins of the program of ‘Arithmetization of Mathematics’. In H. Mehrtens, H. Bos, & I. Schneider (Eds.), Social history of nineteenth century mathematics (pp. 21–49). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Jones, M. L. (2014). Reflection: Reason, calculating machines, and efficient causation. In T. M. Schmalz (Ed.), Efficient causation. A history (pp. 192–197). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Kleene, S. C. (1981). Origins of recursive function theory. Annals of the History of Computing, 3(1), 52–67.

    Article  Google Scholar 

  • Kleene, S. C. (1987). Reflections on Church’s thesis. Notre Dame Journal of Formal Logic, 28(4), 490–498.

    Article  Google Scholar 

  • Klein, F. (1895). Über Arithmetisirung der Mathematik. In Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen. Geschäftliche Mitteilungen (Heft 2, pp. 82–91).

    Google Scholar 

  • Kreisel, G. (1974). A notion of mechanistic theory. Synthese, 29, 9–24.

    Article  Google Scholar 

  • Lardner, D. ([1834] 1989). Babbage’s calculating engine. Edinburgh Review, 59, 263–327. Reprinted In: M. Campbell-Kelly (Ed.), The works of Charles Babbage (Vol. 2, pp. 118–186). London: William Pickering.

    Google Scholar 

  • Leibniz, G. W. (1890). Undated manuscript. In C. I. Gerhardt (Ed.), Die philosophischen Schriften von Gottfried Wilhelm Leibniz (Vol. 7, p. 200). Berlin: Weidmannsche Buchhandlung.

    Google Scholar 

  • Lenzen, W. (2018). Leibniz and the calculus ratiocinator. In S. O. Hansson (Ed.), Technology and mathematics. Cham: Springer.

    Google Scholar 

  • Li, W. (2015). On the algorithmic tradition in the history of mathematics. In D. E. Rowe & W.-S. Horng (Eds.), A delicate balance: Global perspectives on innovation and tradition in the history of mathematics (pp. 321–341). Cham: Springer.

    Chapter  Google Scholar 

  • Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 88(23), 237901.

    Article  Google Scholar 

  • Lovelace, A. A. ([1843] 1989). “Notes by the translator”, appendix in “Sketch of the analytical engine. Scientific Memoirs, 3, 666–731. Reprinted on In M. Campbell-Kelly (Ed.), The works of Charles Babbage (Vol. 3, pp. 89–179). London: William Pickering.

    Google Scholar 

  • MacDonald Ross, G. (2007). Leibniz’s debt to Hobbes. In P. Phemister & S. Brown (Eds.), Leibniz and the English-speaking world. Activity, passivity and corporeal substances in Leibniz’s philosophy (pp. 19–33). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mates, B. (1986/1989). The philosophy of Leibniz: Metaphysics and language. New York: Oxford University Press.

    Book  Google Scholar 

  • Norström, P. (2013). Engineers’ non-scientific models in technology education. International Journal of Technology and Design Education, 23, 377–390.

    Article  Google Scholar 

  • Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig: Teubner.

    Google Scholar 

  • Petri, B., & Schappacher, N. (2007). On arithmetization. In C. Goldstein, N. Schappacher, & J. Schwermer (Eds.), The shaping of arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae (pp. 343–374). Berlin: Springer.

    Chapter  Google Scholar 

  • Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Pitowsky, I. (2007). From logic to physics: How the meaning of computation changed over time. In S. B. Cooper, B. Löwe, & A. Sorbi (Eds.), Computation and Logic in the Real World. Third Conference on Computability in Europe, CiE 2007, Proceedings, Siena, June 18–23, 2007 (Lecture notes in computer science, Vol. 4497, pp. 621–631). Berlin: Springer.

    Google Scholar 

  • Poincaré, H. (1902). Du rôle de l’intuition et de la logique en mathématiques. In E. Duporcq (Ed.), Compte-rendu du deuxième Congrès international des mathématiciens tenu à Paris du 6 au 12 août 1900 (pp. 115–130). Paris: Gauthier-Villars.

    Google Scholar 

  • Pombo, O. (2010). Three roots for Leibniz’s contribution to the computational conception of reason. In F. Ferreira, B. Löwe, E. Mayordomo, & L. M. Gomes (Eds.), Programs, proofs, processes (Lecture notes in computer science, Vol. 6158, pp. 352–361). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Post, E. L. (1936). Finite combinatory processes – Formulation 1. Journal of Symbolic Logic, 1(3), 103–105.

    Article  Google Scholar 

  • Ritter, J. (2000). Egyptian mathmatics. In H. Selin (Ed.), Mathematics across cultures: The history of non-Western mathematics (pp. 115–136). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Russell, B. (1936). The limits of Empiricism. Proceedings of the Aristotelian Society, 36, 131–150.

    Article  Google Scholar 

  • Saari, D. G., & Xia, Z. (1995). Off to infinity in finite time. Notices of the American Mathematical Society, 42, 538–546.

    Google Scholar 

  • Shagrir, O. (2012). Computation, implementation, cognition. Minds and Machines, 22, 137–148.

    Article  Google Scholar 

  • Shannon, C. E. (1956). A universal Turing machine with two internal states. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 157–165). Princeton: Princeton University Press.

    Google Scholar 

  • Shapiro, S. (1998). Incompleteness, mechanism, and optimism. Bulletin of Symbolic Logic, 4(3), 273–302.

    Article  Google Scholar 

  • Sieg, W. (1994). Mechanical procedures and mathematical experience. In A. George (Ed.), Mathematics and mind (pp. 71–117). New York: Oxford University Press.

    Google Scholar 

  • Sieg, W. (1997). Step by recursive step: Church’s analysis of effective calculability. Bulletin of Symbolic Logic, 3(2), 154–180.

    Article  Google Scholar 

  • Sieg, W. (2002). Calculations by man and machine: Conceptual analysis. In W. Sieg, R. Sommer, & C. Talcott (Eds.), Reflections on the foundations of mathematics: Essays in honor of Solomon Feferman (Lecture notes in logic, Vol. 15, pp. 390–409). Natick: A. K. Peters.

    Google Scholar 

  • Sieg, W. (2009). On computability. In A. D. Irvine (Ed.), Philosophy of mathematics (pp. 536–630). Amsterdam: Elsevier.

    Google Scholar 

  • Singer, T. C. (1989). Hieroglyphs, real characters, and the idea of natural language in English seventeenth-century thought. Journal of the History of Ideas, 50(1), 49–70.

    Article  Google Scholar 

  • Smith, W. D. (2006). Church’s thesis meets the N-body problem. Applied Mathematics and Computation, 178, 154–183.

    Article  Google Scholar 

  • Soare, R. I. (1996). Computability and recursion. Bulletin of Symbolic Logic, 2(3), 284–321.

    Article  Google Scholar 

  • Soare, R. I. (2007). Computability and incomputability. In S. B. Cooper, B. Löwe, & A. Sorbi (Eds.), Computation and Logic in the Real World. Third Conference on Computability in Europe, CiE 2007, Proceedings, Siena, June 18–23, 2007 (Lecture notes in computer science, Vol. 4497, pp. 705–715). Berlin: Springer.

    Google Scholar 

  • Swade, D. (2010). Pioneer profile: Ada Lovelace. Resurrection. The Bulletin of the Computer Conservation Society, 53 2010/11.

    Google Scholar 

  • Swade, D. (2011a). Calculating engines: Machines, mathematics, and misconceptions. In R. Flood, A. Rice, & R. Wilson (Eds.), Mathematics in Victorian Britain (pp. 239–259). Oxford: Oxford University Press.

    Google Scholar 

  • Swade, D. (2011b). Pre-electronic computing. In C. B. Jones & J. L. Lloyd Dependable and historic computing. Essays dedicated to Brian Randell on the occasion of his 75th birthday (Lecture notes in computer science, Vol. 6875, pp. 58–83). Berlin: Springer.

    Chapter  Google Scholar 

  • Swade, D. (2018). Mathematics and mechanical computation. In S. O. Hansson (Ed.), Technology and mathematics. Cham: Springer.

    Google Scholar 

  • Timpson, C. G. (2007). What is the lesson of quantum computing? In S. B. Cooper, B. Löwe, & A. Sorbi (Eds.) Computation and Logic in the Real World. Third Conference on Computability in Europe, CiE 2007, Proceedings, Siena, June 18–23, 2007 (Lecture notes in computer science, Vol. 4497, pp. 739–741). Berlin: Springer.

    Google Scholar 

  • Turing, A. (1937a). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.

    Article  Google Scholar 

  • Turing, A. (1937b). On computable numbers, with an application to the Entscheidungsproblem. A Correction. Proceedings of the London Mathematical Society, 43, 544–546.

    Article  Google Scholar 

  • Turing, A. ([1947] 1986). Lecture to the London mathematical society on 20 February 1947. In B. E. Carpenter & R. W. Doran (Eds.), A.M. Turing’s ACE report of 1946 and other papers (pp. 106–124). Cambridge: MIT Press.

    Google Scholar 

  • Turing, A. ([1948] 2004). Intelligent machinery. In B. Jack Copeland (Ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life plus the secrets of Enigma (pp. 410–432). Oxford: Oxford University Press.

    Google Scholar 

  • Turing, A. (1950). Computing machinery and intelligence. Mind, 59, 433–460.

    Article  Google Scholar 

  • Uckelman, S. L. (2010). Computing with concepts, computing with numbers: Llull, Leibniz, and Boole. In F. Ferreira, B. Löwe, E. Mayordomo, & L. M. Gomes (Eds.), Programs, proofs, processes (Lecture notes in computer science, Vol. 6158, pp. 427–437). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Widmaier, R. (1986). Korrespondenten von GW Leibniz: 8. Damaris Masham, geb. Cudworth geb. 18. Januar 1658 in Cambridge-gest. 20. April 1708 in Oates. Studia Leibnitiana, 18(2), 211–227.

    Google Scholar 

  • Yee, A. J., & Kondo, S. (2016). 12.1 Trillion Digits of Pi. And we’re out of disk space…. http://www.numberworld.org/misc__runs/pi-12t/. Downloaded June 26, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Ove Hansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hansson, S.O. (2018). Mathematical and Technological Computability. In: Hansson, S. (eds) Technology and Mathematics. Philosophy of Engineering and Technology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-93779-3_9

Download citation

Publish with us

Policies and ethics