Skip to main content

Part of the book series: Statistics for Social and Behavioral Sciences ((SSBS))

  • 701 Accesses

Abstract

In this chapter we discuss inequality measures, emphasizing their relationships with the Lorenz curve . Many of the early writers and some other more recent papers about inequality do not clearly distinguish between sample and population statistics. A “distribution” for them might refer to some genuine random variable or to the sample distribution of a finite number of observations from some population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaberge, R. (2000). Characterization of Lorenz curves and income distributions. Social Choice and Welfare, 17, 639–653.

    Google Scholar 

  • Aaberge, R. (2001). Axiomatic characterization of the Gini coefficient and Lorenz curve orderings. Journal of Economic Theory, 101, 115–132. Erratum: 140, e356.

    Google Scholar 

  • Alker, H. R. (1965). Mathematics and politics. New York: Macmillan.

    Google Scholar 

  • Alker, H. R., & Russet, B. M. (1966). Indices for comparing inequality. In R. L. Merritt & S. Rokkan (Eds.), Comparing nations: The use of quantitative data in cross-national research (pp. 349–372). New Haven, CT: Yale University Press.

    Google Scholar 

  • Arnold, B. C. (1983). Pareto distributions. Fairland, MD: International Cooperative Publishing House.

    Google Scholar 

  • Arnold, B. C. (1987). Majorization and the Lorenz order: A brief introduction. Lecture notes in statistics (Vol. 43). Berlin: Springer.

    Google Scholar 

  • Arnold, B. C. (2012). On the Amato inequality index. Statistics and Probability Letters, 82, 1504–1506.

    Google Scholar 

  • Arnold, B. C. (2015b). Pareto distributions (2nd ed.). Boca Raton, FL: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (1992). A first course in order statistics. New York: Wiley.

    Google Scholar 

  • Arnold, B. C., & Laguna, L. (1977). On generalized Pareto distributions with applications to income data. International studies in economics, monograph (Vol. 10). Department of Economics. Ames, Iowa: Iowa State University.

    Google Scholar 

  • Arnold, B. C., & Sarabia, J. M. (2017). Explicit expressions for the Amato inequality index (Unpublished Manuscript)

    Google Scholar 

  • Arnold, B. C., & Villaseñor, J. A. (2015). Bias of the sample Lorenz curve. In Ordered data analysis, modeling and health research methods (Springer proceedings in mathematics and statistics, pp. 3–15). 149, Cham: Springer.

    Google Scholar 

  • Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2, 244–263.

    Google Scholar 

  • Beach, C. M., & Davidson, R. (1983). Distribution-free statistical inference with Lorenz curves and income shares. The Review of Economic Studies, 50, 723–735.

    Google Scholar 

  • Bourguignon, F. (1979). Decomposable income inequality measures. Econometrica, 47, 901–920.

    Google Scholar 

  • Butler, R. J., & McDonald, J. B. (1987). Interdistributional income inequality. Journal of Business and Economic Statistics, 5, 13–18.

    Google Scholar 

  • Butler, R. J., & McDonald, J. B. (1989). Using incomplete moments to measure inequality. Journal of Econometrics, 42, 109–119.

    Google Scholar 

  • Chandra, M., & Singpurwalla, N. D. (1978). The Gini Index, the Lorenz Curve and the Total Time on Test Transforms. Technical Report T-368, George Washington University, School of Engineering and Applied Science, Washington, DC.

    Google Scholar 

  • Chotikapanich, D., Griffiths, W. E., & Rao, D. S. P. (2007). Estimating and combining national income distributions using limited data. Journal of Business and Economic Statistics, 25, 97–109.

    Google Scholar 

  • Chotikapanich, D., Valenzuela, R., & Rao, D. S. P. (1997). Global and regional inequality in the distribution of income: Estimation with limited and incomplete data. Empirical Economics, 22, 533–546.

    Google Scholar 

  • Cobham, A., & Sumner, A. (2014). Is inequality all about the tails? The Palma measure of income inequality. Significance, 11, 10–13.

    Google Scholar 

  • Colombi, R. (1990). A new model of income distribution: The Pareto-lognormal distribution. In C. Dagum & M. Zenga (Eds.), Studies in contemporary economics (pp. 18–32). Heidelberg: Springer.

    Google Scholar 

  • Cowell, F. A. (1980). On the structure of additive inequality measures. Review of Economic Studies, 47, 521–531.

    Google Scholar 

  • Cowell, F. A. (2011). Measuring inequality (3rd ed.). LSE perspectives in economic analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Cowell, F. A., & Kuga, K. (1981). Additivity and the entropy concept: An axiomatic approach to inequality measurement. Journal of Economic Theory, 25, 131–143.

    Google Scholar 

  • Dalal, S. R., & Fortini, P. (1982). An inequality comparing sums and maxima with application to Behrens-Fisher type problem. Annals of Statistics, 10, 297–301.

    Google Scholar 

  • Dalton, H. (1920). The measurement of the inequality of incomes. Economic Journal, 30, 348–361.

    Google Scholar 

  • David, H. A. (1968). Gini’s mean difference rediscovered. Biometrika, 55, 573–574.

    Google Scholar 

  • Dempster, A. P., & Kleyle, R. M. (1968). Distributions determined by cutting a simplex with hyperplanes. Annals of Mathematical Statistics, 39, 1473–1478.

    Google Scholar 

  • Donaldson, D., & Weymark, J. A. (1980). A single parameter generalization of the Gini indices of inequality. Journal of Economic Theory, 22, 67–86.

    Google Scholar 

  • Dorfman, R. (1979). A formula for the Gini coefficient. Review of Economics and Statistics, 61, 146–149.

    Google Scholar 

  • Ebrahimi, N., Maasoumi, E., & Soofi, E. S. (1999). Ordering univariate distributions by entropy and variance. Journal of Econometrics, 90, 317–336.

    Google Scholar 

  • Elteto, O., & Frigyes, E. (1968). New income inequality measures as efficient tools for causal analysis and planning. Econometrica, 36, 383–396.

    Google Scholar 

  • Emlen, J. M. (1973). Ecology: An evolutionary approach. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Feller, W. (1971). An introduction to probability theory and its applications (2nd ed., Vol. 2). New York: Wiley.

    Google Scholar 

  • Fisk, P. R. (1961a). The graduation of income distributions. Econometrica, 29, 171–185.

    Google Scholar 

  • Fraser, D. A. S. (1957). Non-parametric methods in statistics. New York: Wiley.

    Google Scholar 

  • Gail, M. H., & Gastwirth, J. L. (1978). A scale-free goodness-of-fit test for the exponential distribution based on the Lorenz curve. Journal of the American Statistical Association, 73, 787–793.

    Google Scholar 

  • Gastwirth, J. L. (1972). The estimation of the Lorenz curve and Gini index. Review of Economics and Statistics, 54, 306–316.

    Google Scholar 

  • Gastwirth, J. L. (1974). Large sample theory of some measures of income inequality. Econometrica, 42, 191–196.

    Google Scholar 

  • Gini, C. (1914). Sulla misura della concentrazione e della variabilita dei caratteri. Atti del R. Instituto Veneto di Scienze, Lettere ed Arti, 73, 1203–1248.

    Google Scholar 

  • Glasser, G. J. (1961). Relationship between the mean difference and other measures of variation. Metron, 21, 176–180.

    Google Scholar 

  • Godwin, H. J. (1945). On the distribution of the estimate of mean deviation obtained from samples from a normal population. Biometrika, 33, 254–256.

    Google Scholar 

  • Goldie, C. M. (1977). Convergence theorems for empirical Lorenz curves and their inverses. Advances in Applied Probability, 9, 765–791.

    Google Scholar 

  • Good, I. J. (1968). Utility of a distribution. Nature, 219(5161), 1392.

    Google Scholar 

  • Greselin, F., & Pasquazzi, L. (2009). Asymptotic confidence intervals for a new inequality measure. Communications in Statistics: Simulation and Computation, 38, 1742–1756.

    Google Scholar 

  • Hart, P. E. (1975). Moment distributions in economics: An exposition. Journal of the Royal Statistical Society, Series A, 138, 423–434.

    Google Scholar 

  • Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Annals of Mathematical Statistics, 19, 293–325.

    Google Scholar 

  • Jordá, V., Sarabia, J. M., & Prieto, F. (2014). On the estimation of the global income distribution using a parsimonious approach. In J. Bishop & J. G. Rodríguez (Eds.), Economic well-being and inequality. Research on economic inequality (Vol. 22, pp. 115–145). Emerald, Bingley, UK.

    Google Scholar 

  • Kakwani, N. C. (1980a). Income inequality and poverty, methods of estimation and policy applications. New York: Oxford University Press.

    Google Scholar 

  • Kleiber, C., & Kotz, S. (2002). A characterization of income distributions in terms of generalized Gini coefficients. Social Choice and Welfare, 19, 789–794.

    Google Scholar 

  • Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. Hoboken, NJ: Wiley.

    Google Scholar 

  • Kolm, S. C. (1976). Unequal inequalities I. Journal of Economic Theory, 12, 416–442.

    Google Scholar 

  • Kondor, Y. (1971). An old-new measure of income inequality. Econometrica, 39, 1041–1042.

    Google Scholar 

  • Lerman, R. I., & Yitzhaki, S. (1984). A note on the calculation and interpretation of the Gini index. Economics Letters, 15, 363–368.

    Google Scholar 

  • Lerman, R. I., & Yitzhaki, S. (1985). Income inequality effects by income source: A new approach and applications to the United States. The Review of Economics and Statistics, 67, 151–156.

    Google Scholar 

  • Lombardo, E. (1979). Osservazioni sulla distribuzione campionaria di un indice di concentrazione dei fenomeni economici. Note Economiche, 5, 106–114.

    Google Scholar 

  • Lomnicki, Z. A. (1952). The standard error of Gini’s mean difference. Annals of Mathematical Statistics, 23, 635–637.

    Google Scholar 

  • Maasoumi, E., & Theil, H. (1979). The effect of the shape of the income distribution on two inequality measures. Economics Letters, 4, 289–291.

    Google Scholar 

  • Marshall, A. W., Olkin, I., & Arnold, B. C. (2011). Inequalities: Theory of majorization and its applications (2nd ed.). New York: Springer.

    Google Scholar 

  • Mehran, F. (1976). Linear measures of income inequality. Econometrica, 44, 805–809.

    Google Scholar 

  • Moothathu, T. S. K. (1983). Properties of Gastwirth’s Lorenz curve bounds for general Gini index. Journal of the Indian Statistical Association, 21, 149–154.

    Google Scholar 

  • Muliere, P., & Scarsini, M. (1989). A note on stochastic dominance and inequality measures. Journal of Economic Theory, 49, 314–323.

    Google Scholar 

  • Nair, U. S. (1936). The standard error of Gini’s mean difference. Biometrika, 28, 428–436.

    Google Scholar 

  • Ord, J. K., Patil, G. P., & Taillie, C. (1978). The choice of a distribution to describe personal incomes. Unpublished manuscript.

    Google Scholar 

  • Ord, J. K., Patil, G. P., & Taillie, C. (1981). Relationships between income distributions for individuals and for house-holds. In C. Taillie, G. P. Patil, & B. Baldessari (Eds.), Statistical distributions in scientific work (Vol. 6, pp. 203–210). Dordrecht: Reidel.

    Google Scholar 

  • Palma, J. G. (2011). Homogenous middles vs. heterogenous tails, and the end of the “inverted-U”: It’s all about the share of the rich. Development and Change, 42, 87–153.

    Google Scholar 

  • Pietra, G. (1915). Delle relazioni tra gli indici di variabilita. Note I, II. Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, 74, 775–792; 793–804.

    Google Scholar 

  • Rényi, A. (1961). On measures of entropy and information. In Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability (Vol. I, pp. 547–561). Berkeley: University of California Press.

    Google Scholar 

  • Rohde, N. (2009). An alternative functional form for estimating the Lorenz curve. Economics Letters, 105, 61–63.

    Google Scholar 

  • Sarabia, J. M., Jordá, V., & Remuzgo, L. (2017a). The Theil indices in parametric families of income distributions - A short review. The Review of Income and Wealth, 63, 867–880.

    Google Scholar 

  • Sarabia, J. M., Prieto, F., & Sarabia, M. (2010). Revisiting a functional form for the Lorenz curve. Economics Letters, 107, 249–252.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell Labs Technical Journal, 27, 379–423.

    Google Scholar 

  • Shorrocks, A. F. (1980). The class additively decomposable inequality measures. Econometrica, 48, 613–625.

    Google Scholar 

  • Shorrocks, A. F. (1984). Inequality decomposition by population subgroups. Econometrica, 52, 1369–1385.

    Google Scholar 

  • Singh, S. K., & Maddala, G. S. (1976). A function for the size distribution of incomes. Econometrica, 44, 963–970.

    Google Scholar 

  • Stigler, S. M. (1974). Linear functions of order statistics with smooth weight functions. Annals of Statistics, 2, 676–693.

    Google Scholar 

  • Taguchi, T. (1968). Concentration-curve methods and structures of skew populations. Annals of Institute of Statistical Mathematics, 20, 107–141.

    Google Scholar 

  • Thistle, P. D. (1990). Large sample properties of two inequality indices. Econometrica, 58, 725–728.

    Google Scholar 

  • Tsui, K. Y. (1995). Multidimensional generalizations of the relative and absolute inequality indices: The Atkinson-Kolm-Sen approach. Journal of Economic Theory, 67, 251–265

    Google Scholar 

  • Tsui, K. Y. (1999). Multidimensional inequality and multidimensional generalized entropy measures: An axiomatic derivation. Social Choice and Welfare, 16, 145–157.

    Google Scholar 

  • Tzavelas, G., & Economou, P. (2012). Characterization properties of the log-normal distribution obtained with the help of divergence measures. Statistics and Probability Letters, 82, 1837–1840.

    Google Scholar 

  • Weymark, J. A. (1979). Generalized Gini Inequality Indices. Discussion paper 79–112, Department of Economics, University of British Columbia, Vancouver, British Columbia.

    Google Scholar 

  • Wilks, S. S. (1962). Mathematical statistics. New York: Wiley.

    Google Scholar 

  • Wyner, A. D., & Ziv, J. (1969). On communication of analog data from bounded source space. Bell System Technical Journal, 48, 3139–3172.

    Google Scholar 

  • Yitzhaki, S. (1983). On an extension of the Gini inequality index. International Economic Review, 24, 617–628.

    Google Scholar 

  • Yntema, D. B. (1933). Measures of the inequality in the personal distribution of wealth or income. Journal of the American Statistical Association, 28, 423–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnold, B.C., Sarabia, J.M. (2018). Inequality Measures. In: Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics. Statistics for Social and Behavioral Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93773-1_5

Download citation

Publish with us

Policies and ethics