Skip to main content

Nonnegative PARAFAC2: A Flexible Coupling Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

Modeling variability in tensor decomposition methods is one of the challenges of source separation. One possible solution to account for variations from one data set to another, jointly analysed, is to resort to the PARAFAC2 model. However, so far imposing constraints on the mode with variability has not been possible. In the following manuscript, a relaxation of the PARAFAC2 model is introduced, that allows for imposing nonnegativity constraints on the varying mode. An algorithm to compute the proposed flexible PARAFAC2 model is derived, and its performance is studied on both synthetic and chemometrics data.

Research funded by F.R.S.-FNRS incentive grant for scientific research n\(^\text {o}\) F.4501.16.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Alternating optimization may be avoided using an all-at-once method but the problem of satisfying the nonnegativity constraints still remains.

References

  1. Amigo, J.M., Skov, T., Bro, R., Coello, J., Maspoch, S.: Solving GC-MS problems with PARAFAC2. TrAC Trends Anal. Chem. 27(8), 714–725 (2008)

    Article  Google Scholar 

  2. Ballabio, D., Skov, T., Leardi, R., Bro, R.: Classification of GC-MS measurements of wines by combining data dimension reduction and variable selection techniques. J. Chemometr. 22(8), 457–463 (2008)

    Article  Google Scholar 

  3. Farias, R.C., Cohen, J.E., Comon, P.: Exploring multimodal data fusion through joint decompositions with flexible couplings. IEEE Trans. Sign. Process. 64(18), 4830–4844 (2016)

    Article  MathSciNet  Google Scholar 

  4. Comon, P., Luciani, X., de Almeida, A.L.F.: Tensor decompositions, alternating least squares and other tales. J. Chemometr. 23(7–8), 393–405 (2009)

    Article  Google Scholar 

  5. García, I., Sarabia, L., Ortiz, M.C., Aldama, J.M.: Building robust calibration models for the analysis of estrogens by gas chromatography with mass spectrometry detection. Anal. Chim. Acta 526(2), 139–146 (2004)

    Article  Google Scholar 

  6. Gillis, N., Glineur, F.: Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Comput. 24(4), 1085–1105 (2012)

    Article  MathSciNet  Google Scholar 

  7. Harshman, R.A.: PARAFAC2: Mathematical and technical notes. UCLA Work. Pap. phonetics, 22, pp. 30–44 (1972). 122215

    Google Scholar 

  8. Harshman, R.A., Hong, S., Lundy, M.E.: Shifted factor analysis–part I: models and properties. J. Chemometr. 17(7), 363–378 (2003)

    Article  Google Scholar 

  9. Johnsen, L.G., Skou, P.B., Khakimov, B., Bro, R.: Gas chromatography-mass spectrometry data processing made easy. J. Chromatogr. A 1503, 57–64 (2017)

    Article  Google Scholar 

  10. Kiers, H.A.L., Ten Berge, J.M.F., Bro, R.: PARAFAC2-part I. a direct fitting algorithm for the PARAFAC2 model. J. Chemometr. 13(3–4), 275–294 (1999)

    Article  Google Scholar 

  11. Mørup, M., Hansen, L.K., Arnfred, S.M., Lim, L.-H., Madsen, K.H.: Shift-invariant multilinear decomposition of neuroimaging data. NeuroImage 42(4), 1439–1450 (2008)

    Article  Google Scholar 

  12. Pompili, F., Gillis, N., Absil, P.-A., Glineur, F.: Two algorithms for orthogonal nonnegative matrix factorization with application to clustering. Neurocomputing 141, 15–25 (2014)

    Article  Google Scholar 

  13. Skov, T., Bro, R.: A new approach for modelling sensor based data. Sens. Actuators B: Chem. 106(2), 719–729 (2005)

    Article  Google Scholar 

  14. Wise, B.M., Gallagher, N.B., Martin, E.B.: Application of PARAFAC2 to fault detection and diagnosis in semiconductor etch. J. Chemometr. 15(4), 285–298 (2001)

    Article  Google Scholar 

  15. Nocedal, J., Wright, S.J.: Sequential quadratic programming. Springer, New York (2006)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Nicolas Gillis for helpful discussions on alternatives to the flexible coupling approach for computing nonnegative PARAFAC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy E. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen, J.E., Bro, R. (2018). Nonnegative PARAFAC2: A Flexible Coupling Approach. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics