Skip to main content

Life Cycle Assessment of Electricity Generation Scenarios in Italy

  • Chapter
  • First Online:
  • 1135 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Hindering global warming and achieving a more competitive, secure and sustainable energy sector are some of the most relevant goals of the 2030 Framework for climate and energy of the European Union. European countries have to identify and implement strategies for contributing to these ambitious goals. In this context, the authors carried out a scenario analysis on the Sicilian electricity mix in order to estimate the life cycle energy and environmental benefits of the increase of the use of renewable energy technologies for electricity production, and the potential contribution of Sicily in the achievement of the European energy and environmental targets. In detail, the authors identified two electricity generation scenarios for 2030 starting from the Sicilian electricity mix in 2014, performed assumptions on the forecasted electricity demand and assessed the potential of renewable energy sources exploitation and the technical, political, social, and environmental constraints. Then, they applied the Life Cycle Assessment methodology to assess the eco-profiles of the identified electricity generation mixes and compared them with the eco-profile of electricity produced in 2014. The results of the comparison showed a reduction of most of the 16 examined environmental impact categories, except for those related to human toxicity, particulate matter, ionizing radiation and resource depletion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The achievable energy generation of a particular technology given the system performance, topographic limitations, environmental and land-use constraints.

References

  • Alterach J, Maran S, Stella G et al (2011) Studi sulle potenzialità energetiche delle Regioni italiane, con riferimento alle fonti idroelettrica ed eolica. Report RSE n. 11001465

    Google Scholar 

  • ANEV—Associazione Nazionale Energia del Vento (2017) Brochure 2017. http://www.anev.org/wp-content/uploads/2017/06/Anev_brochure_2017_10.pdf. Accessed 16 Oct 2017

  • Beccali M, Cellura M, Mistretta M (2007) Environmental effects of energy policy in sicily: the role of renewable energy. Renew Sustain Energy Rev 11:282–298

    Article  Google Scholar 

  • Benini M, Borgarello M, Brignoli V, Gelmini A (2010) Burden sharing regionale dell’obiettivo di sviluppo delle fonti rinnovabili e Piano d’Azione Nazionale per l’Energia Rinnovabile. Report ERSE no. 09004631

    Google Scholar 

  • Bruckner T, Bashmakov I, Mulugetta Y et al (2014) Energy systems. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Cattini A, Del Zotto L, D’Orazio M, Franco R (2011) Allegato al volume: Le fonti rinnovabili in Italia – Schede regionali sulla pianificazione energetica, iter autorizzativi e riferimenti normativi. Ministero dell’Ambiente e della Tutela del Territorio e del Mare

    Google Scholar 

  • Dandres T, Gaudreault C, Tirado-Seco P, Samson R (2012) Macroanalysis of the economic and environmental impacts of a 2005–2025 European Union bioenergy policy using the GTAP model and life cycle assessment. Renew Sustain Energy Rev 16:1180–1192. https://doi.org/10.1016/j.rser.2011.11.003

    Article  Google Scholar 

  • EC—JRC (2012) European Commission—Joint Research Centre—Institute for Environment and Sustainability. Characterization factor of the ILCD recommended life cycle impact assessment methods. Database and supporting information, 1st edn, February 2012, EUR 25167

    Google Scholar 

  • EC—JRC (2017) European Commission—Joint Research Centre—Institute for Environment and Sustainability. Solar radiation and photovoltaic electricity potential country and regional maps for Europe. http://re.jrc.ec.europa.eu/pvgis/cmaps/eu_opt/pvgis_solar_optimum_IT.p

  • European Commission (2011) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the committee of the regions energy roadmap 2050, COM/2011/885 final

    Google Scholar 

  • European Commission (2014) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the committee of the regions a policy frame-work for climate and energy in the period from 2020 to 2030, COM/2014/015 final

    Google Scholar 

  • European Commission (2016) Proposal for a regulation of the European Parliament and of the Council on the Governance of the Energy Union, amending Directive 94/22/EC, Directive 98/70/EC, Directive 2009/31/EC, Regulation (EC) No 663/2009, Regulation (EC) No 715/2009, Directive 2009

    Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H et al (2007a) Implementation of life cycle impact assessment methods. Ecoinvent report No. 3, v2.0, Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H et al (2007b) Overview and methodology. Ecoinvent report no. 1, ver.2.0, Swiss Centre for Life Cycle Inventories. Dübendorf, CH, Description of the Ecoinvent database included in the soft-ware SimaPro ver. 7.1. http://www.pre.nl/simapro/

  • GSE (2017) Statistical report. www.gse.it. Accessed 20 Sept 2017

  • Huld T, Müller R, Gambardella A (2012) A new solar radiation database for estimating PV performance in Europe and Africa. Sol Energy 86:1803–1815. https://doi.org/10.1016/j.solener.2012.03.006

    Article  Google Scholar 

  • IEA (2008) International Energy Agency. Renewable energy essential: wind, OECD/IEA. www.iea.org/publications/freepublications/publication/Wind_Brochure.pdf. Accessed 13 Sept 2017

  • IEA (2011) International Energy Agency. Renewable energy. Markets and prospects by technology, OECD/IEA. www.iea.org/publications/freepublications/publication/Renew_Tech.pdf. Accessed 13 Sept 2017

  • IEA (2014a) International Energy Agency. Energy and climate change—World energy outlook special report. OECD/IEA, Paris

    Google Scholar 

  • IEA (2014b) International Energy Agency. Emissions reduction through upgrade of coal-fired power plants—learning from Chinese experience. OECD/IEA, Paris

    Google Scholar 

  • IEA (2016) International Energy Agency. Energy, climate change and environment: 2016 insights. OECD/IEA, Paris

    Google Scholar 

  • IEA (2017) International Energy Agency. Climate change. https://www.iea.org/topics/climatechange/. Accessed 13 Sept 2017

  • IPCC (2014) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adl A (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • ISO (2006a) ISO 14040: environmental management—life cycle assessment—principles and framework

    Google Scholar 

  • ISO (2006b) ISO 14044: environmental management—life cycle assessment—requirements and guidelines

    Google Scholar 

  • Janssens-Maenhout G, Crippa M, Guizzardi D et al (2017) Fossil CO2 and GHG emissions of all world countries, EUR 28766 EN, Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-73207-2, https://doi.org/10.2760/709792, JRC107877

  • Region of Sicily (2008) Assessorato Industria – Schema del Piano Energetico Regionale della Regione Sicilia. http://pti.regione.sicilia.it/portal/page/portal/PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssEnergia/PIR_DipEnergia/PIR_PianoEnergeticoAmbientaledellaRegioneSicilianaPEAR

  • Region of Sicily (2014) Rapporto Energia 2014 – Monitoraggio sull’energia in Sicilia. Assessorato dell’Energia e dei Servizi di Pubblica Utilità - Dipartimento dell’Energia

    Google Scholar 

  • Region of Sicily (2015) Rapporto Energia 2015 – Monitoraggio sull’energia in Sicilia. Assessorato dell’Energia e dei Servizi di Pubblica Utilità - Dipartimento dell’Energia, http://pti.regione.sicilia.it/portal/page/portal/PIR_PORTALE/PIR_LaStrutturaRegionale/PIR_AssEnergia/PIR_

  • RSE (2017) Atlante eolico interattivo. http://atlanteeolico.rse-web.it/. Accessed 13 Sept 2017

  • Stamford L, Azapagic A (2014) Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy Sustain Dev 23:194–211. https://doi.org/10.1016/j.esd.2014.09.008

    Article  Google Scholar 

  • Šúri M, Huld TA, Dunlop ED, Ossenbrink HA (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81:1295–1305. https://doi.org/10.1016/j.solener.2006.12.007

    Article  Google Scholar 

  • TERNA (2015) Previsioni della domanda elettrica in Italia e del fabbisogno di potenza necessario 2015–2025. (http://download.terna.it/terna/0000/0744/15.PDF)

  • TERNA (2017) Statistics. http://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni.aspx. Accessed 20 Sept 2017

  • US—EPA (2017) United States Environmental Protection Agency. https://www.epa.gov/climate-indicators/greenhouse-gases. Accessed 13 Nov 2017

  • Weidema B, Frees N, Nielsen A-M (1999) Marginal production technologies for life cycle inventories. Int J Life Cycle Assess 4:48–56. https://doi.org/10.1007/BF02979395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Anna Cusenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cellura, M., Cusenza, M.A., Guarino, F., Longo, S., Mistretta, M. (2019). Life Cycle Assessment of Electricity Generation Scenarios in Italy. In: Basosi, R., Cellura, M., Longo, S., Parisi, M. (eds) Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-93740-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93740-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93739-7

  • Online ISBN: 978-3-319-93740-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics