Skip to main content

Integrating Variable Renewable Electricity Supply into Manufacturing Systems

  • Chapter
  • First Online:
Eco-Factories of the Future

Abstract

Expanding renewable energy (RE) generation has been increasingly recognized as a central strategy for climate change mitigation. A substantial share of renewable energy generation comes from variable renewable energy sources (e.g.  wind and solar), which are increasingly installed in decentralized structures. As such, integrating decentralized, variable RE generation into existing supply and demand structures is required to successfully further increase their share. Several different approaches and technologies are available for overcoming intertemporal and spatial demand and supply mismatches. Among them are conventional energy storage technologies as well as implicit energy storage options such as embodied energy in products, enabled through load shifting of energy-flexible production and manufacturing systems. This contribution begins with an overview of current challenges toward RE integration, followed by a discussion of available large-scale grid integration measures. Within the following, a focus is set on options for integrating decentralized variable RE. A promising approach is storing embodied energy in products. Its enabling method, energy flexibility of manufacturing systems, is detailed. A method to improve energy flexibility is discussed and its potential application demonstrated in a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albadi MH, El-Saadany EF (2008) A summary of demand response in electricity markets. Electr Power Syst Res 78:1989–1996

    Article  Google Scholar 

  • Allwood JM, Cullen JM (2012) Sustainable materials: with both eyes open. UIT, Cambridge

    Google Scholar 

  • Arteconi A, Hewitt N, Polonara F (2012) State of the art of thermal storage for demand-side management. Appl Energy 93:371–389

    Article  Google Scholar 

  • Ashok S (2006) Peak-load management in steel plants. Appl Energy 83(5):413–424

    Article  Google Scholar 

  • Ashok S, Banerjee R (2003) Optimal cool storage capacity for load management. Energy 28(2):115–126

    Article  Google Scholar 

  • Beacon Power (2015). http://beaconpower.com/. Accessed 13 Nov 2015

  • Beier J, Thiede S, Herrmann C (2015) Increasing energy flexibility of manufacturing systems through flexible compressed air generation. Procedia CIRP 37:18–23

    Article  Google Scholar 

  • Bernal-Agustín JL, Dufo-López R (2009) Simulation and optimization of stand-alone hybrid renewable energy systems. Renew Sustain Energy Rev 13(8):2111–2118

    Article  Google Scholar 

  • Braun JE (2003) Load control using building thermal mass. J Sol Energy Eng 125(3):292–301

    Article  Google Scholar 

  • Bullough C, Gatzen C, Jakiel C, Koller M, Nowi A, Zunft S (2004) Advanced adiabatic compressed air energy storage for the integration of wind energy. In: Proceedings of European wind energy conference EWEC 2004, London, pp 22–25

    Google Scholar 

  • Bundesministerium für Wirtschaft und Energie (BMWi) (2014) Zweiter Monitoring-Bericht “Energie der Zukunft”. Technical report, Berlin

    Google Scholar 

  • Bundesministerium für Wirtschaft und Energie (BMWi) (2015) Erneuerbare Energien - Zeitreihen Erneuerbare Energien. http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html. Accessed 14 Dec 2015

  • Butterbach S, Vulturescu B, Forgez C, Coquery G, Friedrich G (2011) Lead-acid battery model for hybrid energy storage. In: 2011 IEEE vehicle power and propulsion conference, Chicago, IL. IEEE, pp 1–5

    Google Scholar 

  • Crotogino F, Mohmeyer K-U, Scharf R (2001) Huntorf CAES: more than 20 years of successful operation. Solut Min Res Inst Spring Meet. Orlando, FL, pp 351–357

    Google Scholar 

  • Denholm P, Ela E, Kirby B, Milligan M (2010) The role of energy storage with renewable electricity generation. Technical report, National Renewable Energy Laboratory, Golden, CO. http://www.nrel.gov/docs/fy10osti/47187.pdf

  • DESTATIS (2014) Industriebetriebe produzieren knapp 9% der in Deutschland erzeugten Strommenge. https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2014/10/PD14_363_433.html. Accessed 16 Mar 2015

  • DESTATIS (2015) Energieverwendung der Betriebe im Verarbeitenden Gewerbe 2013. https://www.destatis.de/DE/ZahlenFakten/Wirtschaftsbereiche/Energie/Verwendung/Tabellen/KohleErdgasStrom.html. Accessed 16 Mar 2015

  • Deutsche Energie-Agentur GmbH (dena) (2010) Dena grid study II. Integration of renewable energy sources in the German power supply system from 2015–2020 with an outlook to 2025. Technical report, Berlin

    Google Scholar 

  • DIHK and VEA (2014) Faktenpapier Eigenerzeugung von Strom: Rahmenbedingungen, Trends. Beispiele, Technical report, Berlin, Brüssel, Hannover

    Google Scholar 

  • Elkarmi F, AbuShikhah N (2012) Power system planning technologies and applications: concepts. solutions and management, engineering science reference, Hershey, PA

    Google Scholar 

  • Fernandez M, Li L, Sun Z (2013) “Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems. Int J Prod Econ 146(1):178–184

    Article  Google Scholar 

  • Gallagher KG, Nelson PA (2014) Manufacturing costs of batteries for electric vehicles. In: Pistoia G (ed) Lithium-ion batteries: advances and applications. Elsevier B.V, Amsterdam et al, pp 97–126

    Chapter  Google Scholar 

  • Germany trade and invest (2015) The energy storage market in Germany. Technical report, Köln

    Google Scholar 

  • Graßl M (2015) Bewertung der Energieflexibilität in der Produktion. Herbert Utz Verlag, München

    Google Scholar 

  • Graßl M, Reinhart G (2014) Evaluating measures for adapting the energy demand of a production system to volatile energy prices. Procedia CIRP 15:129–134

    Article  Google Scholar 

  • Graßl M, Vikdahl E, Reinhart G (2013) A petri-net based approach for evaluating energy flexibility of production machines. In: Zäh M (ed) Proceedings of the 5th international conference on changeable, agile, reconfigurable and virtual production (CARV 2013). Springer, Switzerland, Munich, pp 303–308

    Chapter  Google Scholar 

  • Gutowski TG, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: 13th CIRP international conference on life cycle engineering, Lueven, pp 623–627

    Google Scholar 

  • IPCC (2012) Renewable energy sources and climate change mitigation: special report of the Intergovernmental Panel on Climate Change. Technical report, Intergovernmental Panel on Climate Change, Cambridge. https://doi.org/10.5860/CHOICE.49-6309

  • IPCC (2014) Climate change 2014: mitigation of climate change. working group III contribution to the IPCC 5th assessment report. Chapter 7: energy systems. In: Climatic change (2014) Mitigation of climate change working group III contribution to IPCC 5th assessment report. Cambridge University Press, Cambridge, New York, NY

    Google Scholar 

  • Junge M (2007) Simulationsgestützte Entwicklung und Optimierung einer energieeffizienten Produktionssteuerung. kassel university press GmbH, Kassel

    Google Scholar 

  • Karellas S, Tzouganatos N (2014) Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study. Renew Sustain Energy Rev 29:865–882

    Article  Google Scholar 

  • Keller F, Schönborn C, Reinhart G (2015) Energy-orientated machine scheduling for hybrid flow shops. Procedia CIRP 29:156–161

    Article  Google Scholar 

  • Kleiser G, Rauth V (2013) Dynamic modelling of compressed air energy storage for small-scale industry applications. Int J Energy Eng 3(3):127–137

    Google Scholar 

  • Li L, Sun Z, Tang Z (2012) Real time electricity demand response for sustainable manufacturing systems: challenges and a case study. In: IEEE international conference on automation science and engineering, Seoul, pp 353–357. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6386437

  • Lorenz S, Putz M, Schlegel A (2012) Energieeffizienz 2.0: Neue Geschäftsmodelle auch für die Industrie. ZWF Zeitschrift für wirtschaftlichen Fabrikbetr 107(9):599–602

    Article  Google Scholar 

  • Lund H, Salgi G (2009) The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers Manag 50(5):1172–1179

    Article  Google Scholar 

  • Lund H, Salgi G, Elmegaard B, Andersen AN (2009) Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl Therm Eng 29(5–6):799–806

    Article  Google Scholar 

  • Middelberg A, Zhang J, Xia X (2009) An optimal control model for load shifting—with application in the energy management of a colliery. Appl Energy 86:1266–1273

    Article  Google Scholar 

  • Neugebauer R (2014) Handbuch Ressourcenorientierte Produktion. Carl Hanser Verlag GmbH und Co, KG, Wien

    Google Scholar 

  • Nielsen L, Leithner R (2009) Dynamic simulation of an innovative compressed air energy storage plant—detailed modelling of the storage cavern. WSEAS Trans Power Syst 4(8):253–263

    Google Scholar 

  • Oberhofer A (2012) Energy storage technologies and their role in renewable integration. Technical report, Global Energy Network Institute. https://www.geni.org/globalenergy/research/energy-storage-technologies/Energy-Storage-Technologies.pdf

  • Oertel D (2008) Energiespeicher - Stand und Perspektiven: Sachstandsbericht zum Monitoring “Nachhaltige Energieversorgung”. Technical report, TAB - Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag, Berlin

    Google Scholar 

  • Paulus M, Borggrefe F (2011) The potential of demand-side management in energy-intensive industries for electricity markets in Germany. Appl Energy 88(2):432–441

    Article  Google Scholar 

  • Qazi A, Fayaz H, Wadi A, Raj RG, Rahim N (2015) The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. J Clean Prod 104:1–12

    Article  Google Scholar 

  • Rankin R, Rousseau P (2008) Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology. Energy Convers Manag 49(1):62–74

    Article  Google Scholar 

  • Reynders G, Nuytten T, Saelens D (2013) Potential of structural thermal mass for demand-side management in dwellings. Build Environ 64:187–199

    Article  Google Scholar 

  • Ruppel E (2003) Druckluft Handbuch. 4th edn, Essen

    Google Scholar 

  • Schultz C, Sellmaier P, Reinhart G (2015) An approach for energy-oriented production control using energy flexibility. Procedia CIRP 29:197–202

    Article  Google Scholar 

  • Seo H-R, Kim G-H, Kim S-Y, Kim N, Lee H-G, Hwang C, Park M, Yu I-K (2010) Power quality control strategy for grid-connected renewable energy sources using PV array and supercapacitor. In: International conference on electric power systems 2010. Incheon, Korea, pp 437–441

    Google Scholar 

  • Sun Z, Li L, Fernandez M, Wang J (2014) Inventory control for peak electricity demand reduction of manufacturing systems considering the tradeoff between production loss and energy savings. J Clean Prod 82:84–93

    Article  Google Scholar 

  • Yuan X, Zuo J, Huisingh D (2015) Social acceptance of wind power: a case study of Shandong Province, China. J Clean Prod 92:168–178

    Article  Google Scholar 

  • Zhai Y, Sun S, Wang J, Niu G (2011) Job shop bottleneck detection based on orthogonal experiment. Comput Ind Eng 61(3):872–880

    Article  Google Scholar 

  • Zunft S, Jakiel C, Koller M, Bullough C (2006) Adiabatic compressed air energy storage for the grid integration of wind power. In: Sixth international workshop on large-scale integration of wind power and transmission networks for offshore windfarms, Delft, pp 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Beier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beier, J., Thiede, S., Herrmann, C. (2019). Integrating Variable Renewable Electricity Supply into Manufacturing Systems. In: Thiede, S., Herrmann, C. (eds) Eco-Factories of the Future. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-93730-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93730-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93729-8

  • Online ISBN: 978-3-319-93730-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics