Skip to main content

Colors in Glasses

  • Chapter
Springer Handbook of Glass

Abstract

Glass is a fascinating material, not only because of its transparency and for its formability, but also because of the manifold facets of bright colors it can display. Just remember how the colored glasses of cathedral windows made us dream in our childhood, and how much we could quarrel in the schoolyard over a marble or a bead necklace.

In this chapter, we will attempt to understand the physical origin of different colors and by what chemical processes, hues, and intensity of colors can be controlled in glasses. However, to do so, we must first understand what a color is, and only then will we be able to discuss how the different active color centers, when incorporated into a vitreous matrix, the glass, can create such a variety of responses toward light.

We want to focus especially on the most frequent and, thus, typical causes of glass coloring, that is, the mechanisms of absorption. Examples from many transition metal ions will illustrate how their valence, local structure, or relation to other elements can impact the final glass color. The role of plasmon-resonance, involving metallic nanoparticles will also be described.

However, other light effects due to reflection and scattering in the bulk or at the surface of a glass can also induce colors. For example, the iridescence of corroded glasses, which originates from multireflection on an alteration layer, can be exploited as an artistic effect. Light scattering by crystals or phase separation also plays an important role, since it gives us the option to modify the aspect from transparent to opalescent or to opaque.

Finally, we will present some color-related functionalization of glasses such as photochromism and electrochromism. Many more details on glass and colors can be found in the literature, e. g., [9.1, 9.2, 9.3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.J.D. Tilley: Colour and the Optical Properties of Materials (Wiley, Hoboken 2011)

    Google Scholar 

  • W. Weyl: Coloured Glasses (The Society of Glass Technology, Sheffield 1951)

    Google Scholar 

  • G. Blasse, B.C. Grabmaier: Luminescent Materials (Springer, Berlin 1994)

    Book  Google Scholar 

  • J.K. Bowmaker, H.J. Dartnall: Visual pigments of rods and cones in a human retina, J. Physiology 298, 501–511 (1980)

    Article  CAS  Google Scholar 

  • J. Schanda: Colorimetry: Understanding the CIE System (Wiley, Hoboken 2008)

    Google Scholar 

  • T. Bring: Red Glass Coloration (VDM Verlag Dr. Müller, Saarbrücken 2010)

    Google Scholar 

  • D. Möncke, M. Papageorgiou, A. Winterstein-Beckmann, N. Zacharias: Roman glasses coloured by dissolved transition metal ions: Redox-reactions, optical spectroscopy and ligand field theory, J. Archaeol. Sci. 46, 23–36 (2014)

    Article  CAS  Google Scholar 

  • A. Cosentino: FORS spectral database of historical pigments in different binders, E-conservation J. 2, 53–65 (2014)

    Google Scholar 

  • J. García Solé, L.E. Bausá, D. Jaque: An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, Hoboken 2005)

    Book  Google Scholar 

  • F. Robert, U. Boris: Semiconductors and semimetals. In: Semiconductors and Semimetals, ed. by F. Robert, U. Boris (Elsevier, Amsterdam 2004) p. ii

    Google Scholar 

  • D. Ehrt: Redox behaviour of polyvalent ions in the ppm range, J. Non-Cryst. Solids 196, 304–308 (1996)

    Article  CAS  Google Scholar 

  • C.P. Rodriguez, J.S. McCloy, M.J. Schweiger, J.V. Crum, A. Winschell: Optical basicity and nepheline crystallization in high alumina glasses, PNNL-20184, EMS-RPT-003 (Pacific Northwest National Laboratory, Richland 2011), https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20184.pdf

  • V. Dimitrov, T. Komatsu: An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength, J. Univ. Chem. Technol. Metall. 45, 219–250 (2010)

    CAS  Google Scholar 

  • V. Dimitrov, S. Sakka: Electronic oxide polarizability and optical basicity of simple oxides. I, J. Appl. Phys. 79, 1736–1740 (1996)

    Article  CAS  Google Scholar 

  • J.A. Duffy, M.D. Ingram: An interpretation of glass chemistry in terms of the optical basicity concept, J. Non-Cryst. Solids 21, 373–410 (1976)

    Article  CAS  Google Scholar 

  • J.A. Duffy: Bonding, Energy Levels, and Bands in Inorganic Solids (Longman, Essex 1990)

    Google Scholar 

  • J.A. Duffy: A review of optical basicity and its applications to oxidic systems, Geochim. Cosmochim. Acta 57, 3961–3970 (1993)

    Article  CAS  Google Scholar 

  • J.A. Duffy: Optical basicity: A practical acid-base theory for oxides and oxyanions, J. Chem. Educ. 73, 1138–1142 (1996)

    Article  CAS  Google Scholar 

  • J.A. Duffy: Optical basicity of fluorides and mixed oxide–fluoride glasses and melts, Phys. Chem. Glasses–Eur. J. Glass Sci. Technol. Part B 52, 107–114 (2011)

    CAS  Google Scholar 

  • J.A. Duffy: Optical basicity of sulfide systems, J. Chem. Soc. Faraday Trans. 88, 2397–2400 (1992)

    Article  CAS  Google Scholar 

  • C.H. Bellows: Photochromism in Rare-Earth Oxide Glasses, Bachelor Thesis (Alfred University, Alfred 2016)

    Google Scholar 

  • J.J. Kunicki-Goldfinger, I.C. Freestone, I. McDonald, J.A. Hobot, H. Gilderdale-Scott, T. Ayers: Technology, production and chronology of red window glass in the medieval period – rediscovery of a lost technology, J. Archaeol. Sci. 41, 89–105 (2014)

    Article  CAS  Google Scholar 

  • J. Perez-Arantegui, E. Ribechini, G. Cepria, I. Degano, M.P. Colombini, J. Paz-Peralta, E. Ortiz-Palomar: Colorants and oils in Roman make-ups–an eye witness account, Trac-Trends in Anal, Chem. (2009), https://doi.org/10.1016/j.trac.2009.05.006

    Article  Google Scholar 

  • W. Vogel: Glass Chemistry, 2nd edn. (Springer, Berlin 1992)

    Google Scholar 

  • J. Tauc: Highly transparent glasses. In: Optical Properties of Highly Transparent Solids, ed. by S.S. Mitra, B. Bendow (Springer, Boston 1975) pp. 245–260

    Chapter  Google Scholar 

  • C.R. Bamford: Colour Generation and Control in Glass (Elsevier, Amsterdam 1977)

    Google Scholar 

  • R.G.C. Beerkens: Amber chromophore formation in sulphur- and iron-containing soda-lime-silica glasses, Glass Sci. Technol. 76, 166–175 (2003)

    CAS  Google Scholar 

  • P.A. Bingham, A.J. Connelly, R.J. Hand, N.C. Hyatt, P.A. Northrup, R.A. Mori, P. Glatzel, M. Kavčič, M. Žitnik, K. Bučar, R. Edge: A multi-spectroscopic investigation of sulphur speciation in silicate glasses and slags, Glastech. Ber. Glass Sci. Technol. 51, 63–80 (2010)

    CAS  Google Scholar 

  • A. Schütz, D. Ehrt, M. Dubiel, X.C. Yang, B. Mosel, H. Eckert: A multi-method characterization of borosilicate glasses doped with 1 up to 10 mol% of Fe, Ti and Sb, Glass Sci. Technol. 77, 295–305 (2004)

    Google Scholar 

  • H.L. Schläfer, G. Gliemann: Einführung in die Ligandenfeldtheorie (Akademische Verlagsgesellschaft, Frankfurt am Main 1967)

    Google Scholar 

  • T. Bates: Ligand field theory and absorption spectra of transition-metal ions in glasses. In: Modern Aspects of the Vitreous State, ed. by J.D. Mackenzie (Butterworths, London 1962) pp. 195–254

    Google Scholar 

  • A. Paul: Chemistry of Glasses (Springer, Dordrecht 1990)

    Google Scholar 

  • J. Wong, C.A. Angell: Glass Structure by Spectroscopy (Marcel Dekker, New York 1976)

    Google Scholar 

  • J. Ferguson: Spectroscopy of 3d complexes. In: Progress in Inorganic Chemistry, Vol. 12, ed. by S.J. Lippard (Wiley, Hoboken 2007) pp. 159–293

    Chapter  Google Scholar 

  • P.W. Atkins, J. de Paula: Physikalische Chemie, 5th edn. (Wiley, Weinheim 2013)

    Google Scholar 

  • E. Fritsch, G.R. Rossman: An update on color in gems. Part 1: Introduction and colors caused by dispersed metal ions, Gems Gemology 23, 126–139 (1987)

    Article  Google Scholar 

  • M.G. Brik, N.M. Avram, C.N. Avram: Exchange charge model of crystal field for 3d ions. In: Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis, ed. by N.M. Avram, M.G. Brik (Springer, Berlin 2013) pp. 29–94

    Chapter  Google Scholar 

  • M.G. Brik, A.M. Srivastava: Systematic analysis of the spectroscopic characteristics of 3d ions in a free state and some cubic crystals, Opt. Mater. 35, 1776–1782 (2013)

    Article  CAS  Google Scholar 

  • C.G. Ma, M.G. Brik: Systematic analysis of spectroscopic characteristics of heavy transition metal ions with 4dN and 5dN ($$N=1\ldots 10$$) electronic configurations in a free state, J. Lumin. 145, 402–409 (2014)

    Article  CAS  Google Scholar 

  • M. Hubert, A.J. Faber, F. Akmaz, H. Sesigur, E. Alejandro, T. Maehara, S.R. Kahl: Stabilization of divalent chromium Cr(II) in soda–lime–silicate glasses, J. Non-Cryst. Solids 403, 23–29 (2014)

    Article  CAS  Google Scholar 

  • D. Ehrt, M. Leister, A. Matthai: Redox behaviour in glass forming melts, Molten Salt Forum 5/6, 547–554 (1998)

    Google Scholar 

  • A. Matthai, D. Ehrt, C. Rüssel: Redox behaviour of polyvalent ions in phosphate glass melts and phosphate glasses, Glastech. Ber. Glass Sci. Technol. 71, 187–192 (1998)

    CAS  Google Scholar 

  • M. Leister, D. Ehrt., G. von der Gonna, C. Rüssel, F.W. Breitbarth: Redox states and coordination of vanadium in sodium silicates melted at high temperatures, Phys. Chem. Glasses 40, 319–325 (1999)

    CAS  Google Scholar 

  • M. Leister, D. Ehrt: Redox behavior of iron and vanadium ions in silicate melts at temperatures up to 2000 degrees C, Glastech. Ber. Glass Sci. Technol. 72, 153–160 (1999)

    CAS  Google Scholar 

  • D. Ehrt: Zinc and manganese borate glasses – phase separation, crystallisation, photoluminescence and structure, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 54, 65–75 (2013)

    CAS  Google Scholar 

  • J.A. Duffy, M.D. Ingram, S. Fong: Effect of basicity on chemical bonding of metal ions in glass and its relevance to their stability, Phys. Chem. Chem. Phys. 2, 1829–1833 (2000)

    Article  CAS  Google Scholar 

  • J. Kirchhof, S. Unger, J. Dellith, A. Scheffel: Diffusion in binary TiO2-SiO2 glasses, Opt. Mater. Express 4, 672–680 (2014)

    Article  CAS  Google Scholar 

  • Z.Y. Yao, D. Möncke, E.I. Kamitsos, P. Houizot, F. Célarié, T. Rouxel, L. Wondraczek: Structure and mechanical properties of copper–lead and copper–zinc borate glasses, J. Non-Cryst. Solids 435, 55–68 (2016)

    Article  CAS  Google Scholar 

  • D. Möncke, D. Ehrt: Radiation-induced defects in CoO- and NiO-doped fluoride, phosphate, silicate and borosilicate glasses, Glass Sci. Technol. 75, 243–253 (2002)

    Google Scholar 

  • M. Leister, D. Ehrt: Chromium redox states in different silicate melts at high temperatures (1400–2000°C). In: Proc. 5th Eur. Soc. Glass Sci. Technol. Conf., Vol. A1 (1999) pp. 40–49

    Google Scholar 

  • D. Ehrt, M. Leister, A. Matthai: Polyvalent elements iron, tin and titanium in silicate, phosphate and fluoride glasses and melts, Phys. Chem. Glasses 42, 231–239 (2001)

    CAS  Google Scholar 

  • M. Müller, M. Carl, T. Kittel, D. Ehrt: Carbon crucible technology for optical glass melting, Glastech. Ber. Glass Sci. Technol. 68, 312–317 (1995)

    Google Scholar 

  • D.M. Gruen, R.L. McBeth: Tetrahedral NiCl4–ion in crystals and in fused salts. Spectrophotometric study of chloro complexes of Ni(II) in fused salts, J. Phys. Chem. 63, 393–398 (1959)

    Article  CAS  Google Scholar 

  • D. Möncke: Photo-Ionization of 3d-Ions in fluoride-phosphate glasses, Int. J. Appl. Glass Sci. 6, 249–267 (2015)

    Article  CAS  Google Scholar 

  • M. Gitter, W. Vogel, H. Schütz: Zur Kupfer (II)-, Nickel (II)-und Kobalt (II)-Koordination in Oxidgläsern, Wiss. Z. FSU Jena Math.-Naturwiss. R. 32, 341–362 (1983)

    CAS  Google Scholar 

  • D. Möncke, D. Ehrt: Influence of melting and annealing conditions on the optical spectra of a borosilicate glass doped with CoO and NiO, Glass Sci. Technol. 75, 163–173 (2002)

    Google Scholar 

  • A. Dietzel, M. Coenen: Über dreiwertiges Kobalt in Gläsern hohen Alkaligehaltes, Glastechn. Ber. 34, 49–56 (1961)

    CAS  Google Scholar 

  • J.A. Duffy, M.D. Ingram: Environment of Cobalt(II) in Nitrate Glass, J. Am. Ceram. Soc. 51, 544–544 (1968)

    Article  CAS  Google Scholar 

  • L. Galoisy, L. Cormier, G. Calas, V. Briois: Environment of Ni, Co and Zn in low alkali borate glasses: Information from EXAFS and XANES spectra, J. Non-Cryst. Solids 293–295, 105–111 (2001)

    Article  Google Scholar 

  • D. Möncke, J. Jiusti, L.S. Dantas, A.C.M. Rodrigues: Long-term stability of laser-induced defects in (fluoride-)phosphate glasses doped with W, Mo, Ta, Nb and Zr ions, J. Non-Cryst. Solids 498, 401–414 (2018)

    Article  CAS  Google Scholar 

  • F. Gan, L. Xu: Photonic Glasses (World Scientific, London 2006)

    Book  Google Scholar 

  • D. Möncke, D. Ehrt: Photoinduced redox-reactions and transmission changes in glasses doped with 4d- and 5d-ions, J. Non-Cryst. Solids 352, 2631–2636 (2006)

    Article  CAS  Google Scholar 

  • D. Möncke, D. Ehrt: Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants, Opt. Mater. 25, 425–437 (2004)

    Article  CAS  Google Scholar 

  • P. Steppuhn, I. Berg: Waldglashütten im Taunus, Geschichte-Archaeologie-Produkte (Freilichtmuseum Hessenpark, Neu-Anspach 2006)

    Google Scholar 

  • U. Rempel: Die frühneuzeitliche Weinglashütte bei Wieda/Südharz. In: Glashüttenlandschaft Europa, ed. by P. Steppuhn (Schnell Steiner, Regensburg 2008)

    Google Scholar 

  • T.T. Volotinen, J.M. Parker, P.A. Bingham: Concentrations and site partitioning of Fe2+ and Fe3+ ions in a soda–lime–silica glass obtained by optical absorbance spectroscopy, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 49, 258–270 (2008)

    CAS  Google Scholar 

  • H. Müller-Simon, J. Bauer, P. Baumann: Redox behavior of selenium in industrial soda-lime-silica glasses, Glastech. Ber. Glass Sci. Technol. 74, 283–291 (2001)

    Google Scholar 

  • T. Jitwatcharakomol: Optimization and Control of Selenium Chemistry and Color in Flint Glass, Ph.D. Thesis (RWTH Aachen, Aachen 2005)

    Google Scholar 

  • R.D. Wright: The influence of iron, selenium and cobalt, Glass Technol. 40, 71 (1999)

    CAS  Google Scholar 

  • M.R. Cicconi, A. Veber, D. de Ligny, J. Rocherullé, R. Lebullenger, F. Tessier: Chemical tunability of europium emission in phosphate glasses, J. Lumin. 183, 53–61 (2017)

    Article  CAS  Google Scholar 

  • A.K. Varshneya: Fundamentals of Inorganic Glasses, 2nd edn. (Society of Glass Technology, Sheffield 2013)

    Google Scholar 

  • A.J. Shortland: The use and origin of antimonate colorants in early Egyptian glass, Archaeom 44, 517–530 (2002)

    Article  CAS  Google Scholar 

  • S. Maltoni, A. Silvestri: Innovation and tradition in the fourth century mosaic of the casa delle bestie ferite in aquileia, Italy: Archaeometric characterisation of the glass tesserae, Archaeol. Anthropol. Sci. 10(2), 415–429 (2016)

    Article  Google Scholar 

  • D.A. Long: Raman Spectroscopy (McGraw-Hill, New York 1977)

    Google Scholar 

  • K. Hirao, T. Mitsuyu, J. Si, J. Qiu: Active Glass for Photonic Devices, Photoinduced Structures and Their Application (Springer, Berlin 2001)

    Book  Google Scholar 

  • S.D. Stookey: Explorations in Glass: An Autobiography (Wiley-Blackwell, Hoboken 2000)

    Google Scholar 

  • A.V. Dotsenko, L.B. Glebov, V.A. Tsechomsky: Physics and Chemistry of Photochromic Glasses (CRC, Boca Raton 1997)

    Google Scholar 

  • F. Kompan, G. Venus, L. Glebova, H. Mingareev, L. Glebov: Photo-thermo-refractive glass with sensitivity to visible and near IR radiation, Opt. Mater. Express 6, 3881–3891 (2016)

    Article  CAS  Google Scholar 

  • L.B. Glebov: Volume holographic elements in a photo-thermo-refractive glass, J. Hologr. Speckle 5, 1–8 (2008)

    Google Scholar 

  • L. Canioni, M. Bellec, A. Royon, B. Bousquet, T. Cardinal: Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass, Opt. Lett. 33, 360–362 (2008)

    Article  Google Scholar 

  • J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, K. Hirao: Manipulation of gold nanoparticles inside transparent materials, Angew. Chem. Int. Ed. 43, 2230–2234 (2004)

    Article  CAS  Google Scholar 

  • P. Monk, R. Mortimer, D. Rosseinsky: Electrochromism and Electrochromic Devices (Cambridge Univ. Press, New York 2007)

    Book  Google Scholar 

  • C.G. Granqvist: Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films 564, 1–38 (2014)

    Article  CAS  Google Scholar 

  • C.G. Granqvist: Electrochromic oxides, Renew. Energy 5, 141–153 (1994)

    Article  CAS  Google Scholar 

  • C.G. Granqvist: Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam 1995)

    Google Scholar 

  • M. Kamalisarvestani, R. Saidur, S. Mekhilef, F.S. Javadi: Performance, materials and coating technologies of thermochromic thin films on smart windows, Renew. Sustain. Energy Rev. 26, 353–364 (2013)

    Article  CAS  Google Scholar 

  • P. Kiria, G. Hyett, R. Binions: Solid state thermochromic materials, Adv. Mat. Lett. 1, 86–105 (2010)

    Article  CAS  Google Scholar 

  • S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, A. Yu: Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties, Prog. Mater. Sci. 81, 1–54 (2016)

    Article  CAS  Google Scholar 

  • Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, C. Cao: Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing, Nano Energy 1, 221–246 (2012)

    Article  CAS  Google Scholar 

  • M. Sundara Rao, Y. Gandhi, B. Sanyal, K. Bhargavi, M. Piasecki, N. Veeraiah: Studies on \(\gamma\)-ray induced structural changes in Nd3+ doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges, J. Alloy. Compd. 616, 257–262 (2014)

    Article  CAS  Google Scholar 

  • S.S.J. Warne: Thermoluminescence in the earth sciences and archeology, J. Therm. Anal. 48, 39–47 (1997)

    Article  CAS  Google Scholar 

  • G.W. Berger: The use of glass for dating volcanic ash by thermoluminescence, J. Geophys. Res.: Solid Earth 96, 19705–19720 (1991)

    Article  Google Scholar 

  • I. Liritzis, A.K. Singhvi, J.K. Feathers, G.A. Wagner, A. Kadereit, N. Zacharias, S.-H. Li: Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology (Springer, Cham 2013)

    Book  Google Scholar 

  • B.J.R. Swamy, B. Sanyal, Y. Gandhi, R.M. Kadam, V. Nata Rajan, P. Raghava Rao, N. Veeraiah: Thermoluminescence study of MnO doped borophosphate glass samples for radiation dosimetry, J. Non-Cryst. Solids 368, 40–44 (2013)

    Article  CAS  Google Scholar 

  • R. Laopaiboon, C. Bootjomchai: Thermoluminescence studies on alkali-silicate glass doped with dysprosium oxide for use in radiation dosimetry measurement, J. Lumin. 158, 275–280 (2015)

    Article  CAS  Google Scholar 

  • L. Robinet, M. Spring, S. Pagès-Camagna, D. Vantelon, N. Trcera: Investigation of the discoloration of smalt pigment in historic paintings by micro-x-ray absorption spectroscopy at the Co K-edge, Anal. Chem. 83, 5145–5152 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to HDoz. Dr. Doris Ehrt for sharing her experience as much as the samples that illustrate various aspects of color; we thank her and Dr. Maria Rita Cicconi for many fruitful discussions. We thank Charlie Bellows, Ingrid Berg, Dr. Stefan Karlsson, Prof. Alexis M. Clare, Susan Liebold, Johann Mild, Ute Rempel, Ludwick Sichelstiel, Eva Trummer, and Prof. Edgar Zanotto for photographs, samples, references, and comments. The spectra and graphs in Sect. 9.1.5were realized by Dr. Alexander Veber, who used a lot of creativity to make U-coloration more understandable.We fondly remember Dr. Peter Steppuhn, who passed away before the completion of this book but who, despite his grave illness, helped to ensure that the foto and caption on green forest glass was depicted accurately. Doris Möncke is grateful for financial support through FAPESP during her stay at the Federal University of São Carlos (Brazil), where the first draft of this chapter took form, and to the Knowledge Foundation during her stay at Linnæus University, where she worked at the time this chapter was finalized in its current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique de Ligny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

de Ligny, D., Möncke, D. (2019). Colors in Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_9

Download citation

Publish with us

Policies and ethics