Skip to main content

Linear Optical Properties

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter provides an extended overview of the optical properties of glasses. In Sect. 5.1 the underlying physical background of light–matter interaction is presented, where the phenomena of refraction, reflection, absorption, emission and scattering are introduced.

Most oxide glasses are transparent in the visible spectral range. This obvious fact, confirmed by every look through a window, is based on two highly nontrivial principles: (i) the existence of an electronic bandgap and (ii) the (nearly) complete absence of light scattering. Although transparent solid materials like single crystals and glasses have been known for thousands of years, understanding the existence of an electronic bandgap, an energy range where practically no absorption of electromagnetic radiation occurs, requires quantum mechanics, which just became 100 years old. If such a forbidden zone is larger than the photon energy of blue photons, the photons with the largest energy quantum in the visible spectral range, the material is visibly transparent.

$$E_{\text{band\_gap}}> h\nu_{\text{blue}}\;,$$

with \(h\nu_{\text{blue}}=hc/\lambda_{\text{blue}}={\mathrm{3.18}}\,{\mathrm{eV}}\), where \(h\) is Planck's constant, \(c\) is the speed of light in a vacuum (or air), \(\lambda\) is the wavelenght and \(\nu\) is the frequency. The energy is given here in units of eV (\({\mathrm{1}}\,{\mathrm{eV}}={\mathrm{1.602\times 10^{-19}}}\,{\mathrm{J}}\)).

The (nearly) complete absence of light scattering in glasses has its origin in the fact that as opposed, e. g., to most ceramic materials, glasses are isotropic and extremely homogeneous on all length scales relevant for the interaction with visible light. Also, while glasses have well-defined structure on the atomic scale, a few ångstroms (\(\mathrm{\AA}\)), they are completely disordered and therefore homogeneous and isotropic on the larger length scales relevant for the interaction with visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Jackson: Classical Electrodynamics (Wiley, New York 1975)

    Google Scholar 

  2. L.D. Landau, E.M. Lifshitz: The Classical Theory of Fields (Addison Wesley, New York 1971)

    Google Scholar 

  3. C. Kittel: Introduction to Solid State Physics (Oldenbourg, Munich 1988)

    Google Scholar 

  4. H. Haken: Quantum Field Theory of Solids (Teubner, Stuttgart 1973)

    Google Scholar 

  5. A. Sommerfeld: Optics: Lectures on Theoretical Physics, Vol. IV (Academic Press, New York 1954)

    Google Scholar 

  6. A.C. Hardy, F.H. Perrin: The Principles of Optics (McGraw-Hill, New York 1932)

    Google Scholar 

  7. C.S. Williams, O.A. Becklund: Optics: A Short Course for Engineers and Scientists (Wiley, New York 1972)

    Google Scholar 

  8. W.G. Driscoll, W. Vaughan (Eds.): Handbook of Optics (McGraw-Hill, New York 1978)

    Google Scholar 

  9. E. Hecht: Optics, 4th edn. (Addison Wesley, New York 2002)

    Google Scholar 

  10. S. Singh: Refractive index measurement and its applications, Phys. Scr. 65(2), 167–180 (2002)

    Article  CAS  Google Scholar 

  11. D. Halliday, R. Resnick, J. Walker: Fundamentals of Physics, 4th edn. (Wiley, New York 1993)

    Google Scholar 

  12. J.H. Simmons, K.S. Potter: Optical Materials (Academic, New York 2000)

    Google Scholar 

  13. S. Tominaga, N. Tanaka: Refractive index estimation and color image rendering, Pattern Recognit. Lett. 24(11), 1703–1713 (2003)

    Article  Google Scholar 

  14. J.E. Shelby: Introduction to Glass Science and Technology (The Royal Society of Chemistry, Cambridge 1997)

    Google Scholar 

  15. H. Bach, N. Neuroth (Eds.): The Properties of Optical Glass (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  16. J.V. Hughes: A new precision refractometer, J. Rev. Sci. Instrum. 18, 234 (1941)

    Article  CAS  Google Scholar 

  17. Hoya Corporation: Hoya Optical Glass Catalog, www.hoyaoptics.com

  18. Ohara Corporation: Ohara Optical Glass Catalog (Ohara, Brandsburg 1995)

    Google Scholar 

  19. Schott AG, Advanced Optics: Schott Optical Glass Catalog (Schott, Mainz 2001)

    Google Scholar 

  20. F. Gan: Optical and spectroscopic properties of glass (Springer, Berlin 1992)

    Google Scholar 

  21. A. Paul: Chemistry of Glass (Chapman Hall, New York 1990)

    Google Scholar 

  22. C.R. Bamford: Colour Generation and Control in Glass (Elsevier, Amsterdam 1977)

    Google Scholar 

  23. R.G. Burns: Intervalence transitions in mixed valence minerals of iron and titanium, Annu. Rev. Earth Planet. Sci. 9, 345–383 (1981)

    Article  CAS  Google Scholar 

  24. J.E. Shelby: Introduction to Glass Science and Technology (The Royal Society of Chemistry, Cambridge 2005)

    Google Scholar 

  25. W. Koechner: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1976)

    Book  Google Scholar 

  26. H.C. Van de Hulst: Light Scattering by Small Particles (Dover, New York 1981)

    Google Scholar 

  27. G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. 25, 377–445 (1908), Vierte Folge, in German

    Article  CAS  Google Scholar 

  28. A. Ishimaru: Wave Propagation and Scattering in Random Media (IEEE, Piscataway 1997)

    Google Scholar 

  29. C. Bohren, D. Huffman: Absorption, Scattering of Light by Small Particles (Wiley, New York 1983)

    Google Scholar 

  30. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1999)

    Book  Google Scholar 

  31. P. Kubelka, F. Munck: Ein Beitrag zur Optik der Farbanstriche, Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  32. P. Debye, A.M. Bueche: Scattering by an inhomogeneous solid, J. Appl. Phys. 20, 518 (1949)

    Article  CAS  Google Scholar 

  33. C.S. Johnson, D.A. Gabriel: Laser Light Scattering (Dover, New York 1981)

    Google Scholar 

  34. A. Dogariu: Volume scattering in random media. In: Handbook of Optics, Part 1 Classical Optics, Vol. III, ed. by M. Bass (McGraw-Hill, New York 2001), Chap. 3

    Google Scholar 

  35. P.D. Kaplan, A.D. Dinsmore, A.G. Yodh: Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures, Phys. Rev. E 50, 4827 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Letz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Letz, M. (2019). Linear Optical Properties. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_5

Download citation

Publish with us

Policies and ethics