Skip to main content

Thermodynamics and Kinetics of Glass

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter gives an overview of the thermodynamics of the glassy state and the kinetics of glass formation and relaxation. The emphasis is placed on thermodynamics. First, several characteristic features of glasses are discussed in relation to earlier definitions of the glassy state. Then, the glassy state is contrasted to equilibrium states by discussing glass formation versus crystallization, the glass transition versus equilibrium phase transitions, and relaxation phenomena typical of glasses. A major part is devoted to fundamental aspects of the thermodynamics of glasses, comprising a detailed discussion of enthalpy, entropy, and the kinetics of glass formation as derived by nonequilibrium thermodynamics. Another significant part focuses on the quantitative treatment of multicomponent glasses and glass melts by using the formalism of thermodynamics of mixed phases. Tools and models are presented allowing one to approach the properties of glasses relevant to industry. In terms of examples, the emphasis rests on oxide glasses, in specific, silicate glasses. The chapter closes with an outlook on future developments and on challenges for future research work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • G. Tammann: Der Glaszustand (Leopold Voss, Leipzig 1933)

    Google Scholar 

  • I. Gutzow, J. Schmelzer: The Vitreous State (Springer, Berlin 2013)

    Book  Google Scholar 

  • J.W.P. Schmelzer, I.S. Gutzow: Glasses and the Glass Transition (Wiley-VCH, Weinheim 2011)

    Book  Google Scholar 

  • S.V. Nemilov: Thermodynamic and Kinetic Aspects of the Vitreous State (CRC Press, Boca Raton 1995)

    Google Scholar 

  • E. Donth: The Glass Transition (Springer, Berlin 2001)

    Book  Google Scholar 

  • L. Leuzzi, T.M. Nieuwenhuizen: Thermodynamics of the Glassy State (Taylor & Francis, New York 2007)

    Book  Google Scholar 

  • B.O. Mysen, P. Richet: Silicate Glasses and Melts (Elsevier, Amsterdam 2005)

    Google Scholar 

  • G.W. Scherer: Glass formation and relaxation. In: Glasses and Amorphous Materials, ed. by J. Zarzycki, Materials Science and Technology, Vol. 9, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley VCH, Weinheim 1991) pp. 119–173

    Google Scholar 

  • P.H. Gaskell: Models for the structure of amorphous solids. In: Glasses and Amorphous Materials, ed. by J. Zarzycki, Materials Science and Technology, Vol. 9, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley VCH, Weinheim 1991) pp. 175–278

    Google Scholar 

  • C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin: Relaxation in glassforming liquids and amorphous solids, Appl. Phys. Rev. B 88, 3113–3157 (2000)

    Article  CAS  Google Scholar 

  • P.G. Debenedetti, F.H. Stillinger: Supercooled liquids and the glass transition, Nature 410, 259–267 (2001)

    Article  CAS  Google Scholar 

  • C.A. Angell: Formation of glasses from liquids and biopolymers, Science 267, 1924–1935 (1995)

    Article  CAS  Google Scholar 

  • ASTM C162-05: Standard Terminology of Glass and Glass Products (ASTM International, Conshohocken 2015)

    Google Scholar 

  • W.H. Zachariasen: The atomic arrangement in glass, J. Chem. Soc. 54, 3841–3851 (1932)

    Article  CAS  Google Scholar 

  • G.N. Greaves: EXAFS and the structure of glass, J. Non-Cryst. Solids 7, 203–217 (1985)

    Article  Google Scholar 

  • L.D. Landau, E.M. Lifshitz: Statistical Physics (Pergamon, Oxford 1969)

    Google Scholar 

  • J. Frenkel: Kinetic Theory of Liquids (Oxford Clarendon, Oxford 1946)

    Google Scholar 

  • V.V. Brazhkin, K. Trachenko: Collective excitations and thermodynamics of disordered states: New insights into an old problem, J. Chem. Phys. B 118, 11417 (2014)

    Article  CAS  Google Scholar 

  • L. Stoch: Real glass crystallization high resolution electron microscopy (HREM) study and classic nucleation theory, Opt. Appl. 35, 819–827 (2005)

    CAS  Google Scholar 

  • J.-F. Poggemann, G. Heide, G.H. Frischat: Direct view of the structure of different glass fracture surfaces by atomic force microscopy, J. Non-Cryst. Solids 326/327, 15–20 (2003)

    Article  CAS  Google Scholar 

  • F. Simon: Fünfundzwanzig Jahre Nernst'scher Wärmesatz, Ergeb. Exakt. Naturwiss. 9, 222–274 (1930)

    Article  Google Scholar 

  • R. Haase: Thermodynamik der Irreversiblen Prozesse (Steinkopff, Darmstadt 1963)

    Book  Google Scholar 

  • H. Scholze: Glass – Nature, Structure, and Properties (Springer, Berlin 1990)

    Google Scholar 

  • R. Clasen: Preparation and sintering of high-density green bodies to high-purity silica glasses, J. Non-Cryst. Solids 89, 223–244 (1987)

    Article  Google Scholar 

  • A. Kolmogorov: A statistical theory for the recrystallization of metals, Akad. Nauk. SSSR, Izv., Ser. Mat. 1, 355 (1937)

    Google Scholar 

  • M. Avrami: Kinetics of phase change. Pt. I. General theory, J. Chem. Phys. 7, 1103–1112 (1939)

    Article  CAS  Google Scholar 

  • M. Avrami: Kinetics of phase change. Pt. II. Transformation-time relations for random distributed nuclei, J. Chem. Phys. 8, 212–224 (1940)

    Article  CAS  Google Scholar 

  • M. Avrami: Kinetics of phase change. Pt. III. Granulation, phase change, and microstructure kinetics of phase change, J. Chem. Phys. 9, 177–184 (1941)

    Article  CAS  Google Scholar 

  • W.A. Johnson, R.F. Mehl: Reaction kinetics in processes of nucleation and growth, Trans. Metall. Soc. AIME 135, 416–442 (1939)

    Google Scholar 

  • D.R. Uhlmann: A kinetic treatment of glass formation, J. Non-Cryst. Solids 7, 337–248 (1972)

    Article  CAS  Google Scholar 

  • D. Turnbull: Under what conditions can a glass be formed?, Contemp. Phys. 10, 473–488 (1969)

    Article  CAS  Google Scholar 

  • P. Richet, Y. Bottinga: Rheology and configurational entropy in silicate melts. In: Reviews in Mineralogy, Vol. 32, ed. by J.F. Stebbins, P.F. McMillan, D.B. Dingwell (Mineralogical Society of America, Washington D.C. 1994)

    Google Scholar 

  • C.A. Angell: Glass-formers and viscous liquid slowdown since David Turnbull: Enduring puzzles and new twists, MRS Bulletin 33, 544–555 (2008)

    Article  CAS  Google Scholar 

  • J.W.P. Schmelzer, I. Gutzow: The Prigogine-Defay ratio revisited, J. Chem. Phys. 125, 184511 (2006)

    Article  CAS  Google Scholar 

  • J.-L. Garden, H.G. Guillou, J. Richard, L. Wondraczek: Configurational Prigogine–Defay ratio, J. Non-Eq. Thermodyn. 37, 143–177 (2012)

    Google Scholar 

  • C. Mauro, C. Ribeiro, T. Scopigno, G. Ruocco: Prigogine–Defay ratio for an ionic glass-former: Molecular dynamics simulation, J. Phys. Chem. B 113, 3099–3104 (2009)

    Article  CAS  Google Scholar 

  • U. Buchenau: Structural interpretation of the Prigogine-Defay ratio at the glass transition, Phys. Rev. B 86, 184105 (2012)

    Article  CAS  Google Scholar 

  • D. Gundermann, U.R. Pedersen, T. Hecksher, N.P. Bailey, B. Jakobsen, T. Christensen, N.B. Olsen, T.B. Schrøder, D. Fragiadakis, R. Casalini, C.M. Roland, J.C. Dyre, K. Niss: Predicting the density-scaling exponent of a glass-forming liquid from Prigogine-Defay ratio measurements, Nat. Phys. 7, 816–821 (2011)

    Article  CAS  Google Scholar 

  • H.N. Ritland: Density phenomena in the transformation range of aborosilicate crown glass, J. Am. Ceram. Soc. 37, 370–378 (1954)

    Article  CAS  Google Scholar 

  • C.T. Moynihan, A.J. Easteal, M.A. De Bolt, J. Tucker: Dependence of the fictive temperature of glass on cooling rate, J. Am. Ceram. Soc. 59, 12–16 (1976)

    Article  CAS  Google Scholar 

  • G.M. Bartenev, N.N. Scheglova: High-temperature relaxation mechanisms in inorganic glasses, J. Non-Cryst. Solids 37, 285–298 (1980)

    Article  CAS  Google Scholar 

  • A.Q. Tool: Relation between inelastic deformability and thermal expansion of glass in its annealing range, J. Am. Ceram. Soc. 29, 240–253 (1946)

    Article  CAS  Google Scholar 

  • I. Prigogine: Thermodynamics of Irreversible Processes (Ch. Thomas, Springfield 1955)

    Google Scholar 

  • I. Prigogine, D. Kondepudi: Modern Thermodynamics (Wiley, Chichester 1998)

    Google Scholar 

  • O.S. Narayanaswami: A model of structural relaxation in glass, J. Am. Ceram. Soc. 54, 491–498 (1971)

    Article  Google Scholar 

  • W. Scherer: Theories of relaxation, J. Non-Cryst. Solids 123, 73–89 (1990)

    Article  Google Scholar 

  • O.V. Mazurin: Relaxation phenomena in glass, J. Non-Cryst. Solids 25, 130–169 (1977)

    Article  Google Scholar 

  • H. Vogel: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten, Phys. Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  • G. Fulcher: Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8, 339–355 (1925)

    Article  CAS  Google Scholar 

  • G. Tammann, W. Hesse: Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten, Z. Anorg. Chem. 156, 245–257 (1926)

    Article  CAS  Google Scholar 

  • M.L. Williams, R.F. Landel, J.D. Ferry: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem Soc. 77, 3701–3703 (1955)

    Article  CAS  Google Scholar 

  • G. Adam, J.H. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43, 139–146 (1965)

    Article  CAS  Google Scholar 

  • I. Avramov, A. Milchev: Effect of disorder on diffusion and viscosity in condensed systems, J. Non-Cryst. Solids 104, 253–260 (1988)

    Article  CAS  Google Scholar 

  • J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)

    Article  CAS  Google Scholar 

  • G. Meerlender: Viskositäts-Temperaturverhalten des Standardglases I der DGG (Deutsche Glastechnische Gesellschaft), Glastechn. Ber. 47, 1–3 (1974)

    CAS  Google Scholar 

  • Q. Zheng, J.C. Mauro: Viscosity of glass forming systems, J. Am. Ceram. Soc. 100, 6–25 (2017)

    Article  CAS  Google Scholar 

  • P. Richet, Y. Bottinga: Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous phases, Earth Planet. Sci. Lett. 67, 415–432 (1984)

    Article  CAS  Google Scholar 

  • R.M. Martens, M. Rosenhauer, H. Büttner, K. von Gehlen: Heat capacity and kinetic parameters in the glass transition interval of diopside, anorthite, and albite glass, Chem. Geol. 62, 49–70 (1987)

    Article  CAS  Google Scholar 

  • K.M. Krupka, R.A. Robie, B.S. Hemingway, D.M. Kerrick, J. Ito: Low-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite, Am. Mineralogist 70, 249–260 (1985)

    CAS  Google Scholar 

  • K.M. Krupka, B.S. Hemingway, R.A. Robie, D.M. Kerrick: High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, and wollastonite, Am. Mineral. 70, 261–271 (1985)

    CAS  Google Scholar 

  • P. Richet, R.A. Robie, B.S. Hemingway: Low-temperature heat capacity of diopside glass (CaMgSi2O6): A calorimetric test of the configurational entropy theory applied to the viscosity of liquid silicates, Geochim. Cosmochim. Acta 96, 1521–1533 (1986)

    Article  Google Scholar 

  • R.A. Robie, B.S. Hemingway, J.R. Fisher (Eds.): Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at High Temperatures (Geol. Survey Bull. U.S. Gov. Printing Office, Washington 1978)

    Google Scholar 

  • O. Knacke, O. Kubaschewski, K. Hesselmann (Eds.): Thermochemical Properties of Inorganic Substances, Vols. I–III (Springer, Berlin 1991)

    Google Scholar 

  • O. Kubaschweski, C.B. Alcock, P.J. Spencer: Materials Thermochemistry (Pergamon, London 1993)

    Google Scholar 

  • M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, A.D. Syverud (Eds.): JANAF Thermochemical Tables (The Am. Ceram. Soc., Westerville 1985)

    Google Scholar 

  • S.F. Edwards, R.B.S. Oakeshott: Theory of powders, Physica A 159, 1080–1090 (1989)

    Article  Google Scholar 

  • L.V. Woodcock: Thermodynamic description of liquid-state limits, J. Phys. Chem. B 116, 3735–3744 (2012)

    Article  CAS  Google Scholar 

  • A. Takada, R. Conradt, P. Richet: Residual entropy and structural disorder in glass: A review of history and an attempt to resolve two apparently conflicting views, J. Non-Cryst. Solids 429, 33–44 (2015)

    Article  CAS  Google Scholar 

  • W. Nernst: Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen, Nachr. Kgl. Ges. Wiss. Gött. 1, 1–40 (1906)

    Google Scholar 

  • W. Nernst: Über die Beziehung zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen, Ber. Kgl. Preuss. Akad. Wiss. 52, 933–940 (1906)

    Google Scholar 

  • M. Planck: Vorlesungen über Thermodynamik (Veit, Leipzig 1911)

    Google Scholar 

  • G.E. Gibson, W.F. Giauque: The third law of thermodynamics. Evidence from the specific heats of glycerol that the entropy of glass exceeds that of a crystal at the absolute zero, J. Am. Chem. Soc. 45, 93–104 (1923)

    Article  CAS  Google Scholar 

  • W.F. Giauque, J.O. Clayton: The heat capacity and entropy of nitrogen. Heat of vaporization. Vapor pressure of solid and liquid. The reaction 1/2 N2 + 1/2 O2 = NO from spectroscopic data, J. Am. Chem. Soc. 55, 4875–4889 (1933)

    Article  CAS  Google Scholar 

  • F. Simon: Zum Prinzip von der Unerreichbarkeit des absoluten Nullpunktes, Z. Phys. 41, 806–809 (1927)

    Article  CAS  Google Scholar 

  • F. Simon: Über den Zustand der unterkühlten Flüssigkeiten und Gläser, Z. Anorg. Allg. Chem. 203, 219–227 (1931)

    Article  CAS  Google Scholar 

  • K. Clusius, E. Bartholomé: The heat of rotation of the molecule HD and D2 and the nuclear spin of D atoms, Z. Elektrochem. Angew. Phys. Chem. 40, 524–529 (1934)

    CAS  Google Scholar 

  • J. Wilks: The Third Law of Thermodynamics (Oxford Univ. Press, Oxford 1961)

    Google Scholar 

  • F. Simon: The third law of thermodynamics – A historical survey. 40th Guthrie Lecture (The Physical Society, Oxford 1956)

    Google Scholar 

  • J. Jäckle: On the glass transition and the residual entropy of glasses, Philos. Mag. B 44, 533–545 (1981)

    Article  Google Scholar 

  • J.C. Mauro, M.M. Smedskjaer: Statistical mechanics of glass, J. Non-Cryst. Solids 396/397, 41–53 (2014)

    Article  CAS  Google Scholar 

  • R.G. Palmer: Broken ergodicity, Adv. Phys. 31, 669–735 (1982)

    Article  Google Scholar 

  • F. Simon, F. Lange: Zur Frage der Entropie amorpher Substanzen, Z. Phys. 38, 227–236 (1926)

    Article  CAS  Google Scholar 

  • B. Champagnon, C. Chemarin, P. Richet: Fictive temperature and medium range order in silicate glasses: Comparison between heat capacity measurements and the Boson peak, Philos. Mag. B 77, 663–669 (1998)

    Article  CAS  Google Scholar 

  • E. Duval, A. Boukenter, T. Archibat: Vibrational dynamics and the structure of glasses, Phys. Condens. Matter 2, 10227–10234 (1990)

    Article  Google Scholar 

  • A.B. Bestul, S.S. Chang: Excess entropy at glass transformation, J. Chem. Phys. 40, 3731–3733 (1964)

    Article  CAS  Google Scholar 

  • A.B. Bestul, S.S. Chang: Limits on calorimetric residual entropies of glasses, J. Chem. Phys. 43, 4532–4533 (1965)

    Article  CAS  Google Scholar 

  • J.P. Sethna: Statistical mechanics: Entropy, Order Parameters, and Complexity (Oxford Univ. Press, Oxford 2006)

    Google Scholar 

  • I. Gutzow, J.W.P. Schmelzer: The third principle of thermodynamics and the zero-point entropy of glasses. History and new developments, J. Non-Cryst. Solids 355, 581–594 (2009)

    Article  CAS  Google Scholar 

  • P.D. Guijrati: Hierarchy of relaxation times and residual entropy: A non-equilibrium approach, Entropy 20, 149 (2018)

    Article  CAS  Google Scholar 

  • R. Conradt: Thermodynamics of glass melting. In: Fiberglass and Glass Technology, ed. by F.T. Wallenberger, P.A. Bingham (Springer, Berlin 2010)

    Google Scholar 

  • J.C. Mauro, P.K. Gupta, R.J. Loucks: Continuously broken ergodicity, J. Chem. Phys. 126, 184511 (2007)

    Article  CAS  Google Scholar 

  • J.C. Mauro, P.K. Gupta, R.J. Loucks, A.K. Varshneya: Non-equilibrium entropy of glasses formed by continuous cooling, J. Non-Cryst. Solids 355, 600–606 (2009)

    Article  CAS  Google Scholar 

  • J.C. Mauro, R.J. Loucks, S. Sen: Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems, J. Chem. Phys. 133, 164503 (2010)

    Article  CAS  Google Scholar 

  • M. Goldstein: On the reality of residual entropies of glasses and disordered crystals, J. Chem. Phys. 128, 154510 (2008)

    Article  CAS  Google Scholar 

  • G.P. Johari: Configurational and residual entropies of nonergodic crystals and the entropy's behavior on glass formation, J. Chem. Phys. 132, 124509 (2010)

    Article  CAS  Google Scholar 

  • W. Kauzmann: The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev. 43, 219–256 (1948)

    Article  CAS  Google Scholar 

  • H.-J. Hoffmann: Energy and entropy of crystals, melts and glasses or what is wrong in Kauzmann's paradox?, Materialwiss. Werkstofftech. 43, 528–533 (2012)

    Article  CAS  Google Scholar 

  • M. Allibert, R. Parra, C. Saint-Jours, M. Tmar: Thermodynamic activity data for slag systems. In: Slag Atlas, ed. by M. Allibert, et al. (Stahleisen, Düsseldorf 1995)

    Google Scholar 

  • R. Conradt: On volatilization from glass melts, Glastechn. Ber. 59, 34–52 (1986)

    CAS  Google Scholar 

  • Phase Equilibria Diagrams PC Database Ver. 2.1, Ver. 4.2. (The American Ceramic Society, Westerville 1998, 2017)

    Google Scholar 

  • G. Eriksson, K. Hack: ChemSage – A computer program for the calculation of complex chemical equilibria, Metall. Trans. B 21, 1013–1023 (1990)

    Article  Google Scholar 

  • Thermfact Montreal and GTT Technologies Aachen, FACTSAGE Software Ver. 5.2 (2004)

    Google Scholar 

  • W.E.S. Turner: Studies on volatilization from glass melts, Glastechn. Ber. 12, 409–413 (1934)

    CAS  Google Scholar 

  • A. Navrotsky, R. Hon, D.F. Weill, D.J. Henry: Thermochemistry of glasses and liquids in the systems CaMgSi2O6-CaAl2Si3O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O, Geochim. Cosmochim. Acta 44, 1409–1423 (1980)

    Google Scholar 

  • R. Conradt: Chemical structure, medium range order, and crystalline reference state of multicomponent oxide liquids and glasses, J. Non-Cryst. Solids 345/346, 16–23 (2004)

    Article  CAS  Google Scholar 

  • R. Conradt: The industrial glass melting process. In: The SGTE Casebook. Thermodynamics at Work, ed. by K. Hack (CRC Press, Boca Raton 2008) pp. 282–303

    Chapter  Google Scholar 

  • K. Philipps, R.P. Stoffel, R. Dronskowski, R. Conradt: Experimental and theoretical investigation of elastic moduli of silicate glasses and crystals, Front. Mater. 4, 1–9 (2017)

    Article  Google Scholar 

  • W. Cross, J.P. Iddings, L.V. Pirrson, H.S. Washington: A quantitative chemico-mineralogical classification and nomenclature of igneous rocks, J. Geol. 10, 555–590 (1902)

    Article  CAS  Google Scholar 

  • B.A. Shakhmatkin, N.M. Vedishcheva, M.M. Shultz, A.C. Wright: The thermodynamic properties of oxide glasses and glass-forming liquids and their chemical structure, J. Non-Cryst. Solids 177, 249–256 (1994)

    Article  CAS  Google Scholar 

  • N.M. Vedishcheva, B.A. Shakhmatkin, M.M. Shultz, A.C. Wright: The thermodynamic modeling of glass properties: A practical proposition?, J. Non-Cryst. Solids 196, 239–243 (1996)

    Article  CAS  Google Scholar 

  • B.A. Shakhmatkin, N.M. Vedishcheva, A.C. Wright: Thermodynamic modeling of the structure of glasses and melts: Single-component, binary and ternary systems, J. Non-Cryst. Solids 293–295, 312–317 (2001)

    Google Scholar 

  • W.G. Dorfeld: Structural thermodynamics of alkali silicates, Phys. Chem. Glasses 29, 179–186 (1988)

    CAS  Google Scholar 

  • D.N. Rego, G.K. Sigworth, W.O. Philbrook: Thermodynamic study of Na2O-SiO2 melts at 1300° and 1400°C, Metall. Trans. B 16, 313–323 (1985)

    Article  Google Scholar 

  • P.W. Anderson: Through the glass lightly, Science 267, 1615–1616 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Conradt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Conradt, R. (2019). Thermodynamics and Kinetics of Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_2

Download citation

Publish with us

Policies and ethics