Skip to main content

Phosphate Glasses

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter is dedicated to the study of phosphate glasses, from their fundamental aspects to their most relevant applications today. \(\mathrm{P_{2}O_{5}}\)-based glasses have experienced a continuously increasing number of published works in the last decades and still they possess a bright potential. Their sometimes intricate structure has made their study a quite relevant field for the glass science community, which attracts more and more researchers. In addition, the associated difficulties in their preparation on a large scale have led to the development of specific methods, such as those used for the melting of Nd-laser glasses. They are particularly known to have a low chemical durability, though the progress in the optimization of their composition demonstrates that can be very competitive and, in this respect, we will also pay attention to the improvement of their properties as a result of their nitridation. The structure and main physicochemical properties of phosphate glasses will be reviewed, highlighting the most relevant and well-known applications existing nowadays, such as sealing and laser glasses, biomedical glasses, and solid electrolytes or for the storage of wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Vogel: Glass Chemistry (Springer, Berlin, Heidelberg 1994)

    Book  Google Scholar 

  2. N.N. Greenwood, A. Earnshaw: Chemistry of the Elements (Pergamon, Oxford 1984)

    Google Scholar 

  3. V.M. Goldschmidt: Geochemische Verteilungsgesetze der Elemente, Skr. Nor. Videns. Akad. K1, 1; Mat. Naturvidensk. K1(8), 7–156 (1926)

    Google Scholar 

  4. W.J. Zachariasen: The atomic arrangement in glass, J. Am. Ceram. Soc. 54, 3841–3851 (1932)

    CAS  Google Scholar 

  5. A. Dietzel: Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Z. Elektrochem. 48, 9–23 (1942)

    CAS  Google Scholar 

  6. E. Thilo: Die Kondensierten Phosphate, Naturwissenschaften 46(11), 367–373 (1959)

    Article  CAS  Google Scholar 

  7. J.R. Van Wazer: Phosphorus and its Compounds, Vol. I (Interscience, New York 1958)

    Google Scholar 

  8. R.K. Brow, D.R. Tallant, J.J. Hudgens, S.W. Martin, A.D. Irwin: The short-range structure of sodium ultraphosphate glasses, J. Non-Cryst. Solids 177, 221–228 (1994)

    Article  CAS  Google Scholar 

  9. U.W. Hoppe: A structural model for phosphate glasses, J. Non-Cryst. Solids 195, 138–147 (1996)

    Article  CAS  Google Scholar 

  10. J.R. Jones, A.G. Clare: Bio-Glasses: An Introduction (Wiley, Chichester 2012)

    Book  Google Scholar 

  11. M. Ren, S. Cai, W. Zhang, T. Liu, X. Wu, P. Xu, D. Wang: Preparation and chemical stability of CaO-P2O5-Na2O-B2O3 porous glass-ceramics, J. Non-Cryst. Solids 380, 78–85 (2013)

    Article  CAS  Google Scholar 

  12. J.H. Campbell, J.S. Hayden, A. Marker: High power solid-state lasers: A laser glass perspective, Int. J. App. Glass Sci. 2(1), 3–29 (2011)

    Article  CAS  Google Scholar 

  13. I. Ahmed, A.J. Parsons, G. Palmer, J.C. Knowles, G.S. Walker, C.D. Rudd: Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite, Acta Biomater 4, 1307–1314 (2008)

    Article  CAS  Google Scholar 

  14. J.C. Knowles: Phosphate based glasses for biomedical applications, J. Mater. Chem. 13, 2395–2401 (2003)

    Article  CAS  Google Scholar 

  15. I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles: Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass fibre system, Biomaterials 25, 501–507 (2004)

    Article  CAS  Google Scholar 

  16. I. Ahmed, M. Lewis, I. Olsen, J.C. Knowles: Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system, Biomaterials 25, 491–499 (2004)

    Article  CAS  Google Scholar 

  17. K.M.Z. Hossain, M.S. Hassan, R. Felfel, I. Ahmed: Development of phosphate-based glass fibers for biomedical applications. In: Hot Topics in Biomaterials (Future Science, London 2014) pp. 104–115

    Chapter  Google Scholar 

  18. M.J. Weber: Science and technology of laser glass, J. Non-Cryst. Solids 123, 208–222 (1990)

    Article  CAS  Google Scholar 

  19. J.H. Campbell, T.I. Suratwala: Nd-doped phosphate glasses for high-energy/high-peak-power lasers, J. Non-Cryst. Solids 263/264, 318–341 (2000)

    Article  Google Scholar 

  20. T.T. Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, J. Solis: Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass, Optics Lett. 38, 5248–5251 (2013)

    Article  CAS  Google Scholar 

  21. J. del Hoyo, R. Martinez Vazquez, B. Sotillo, T.T. Fernandez, J. Siegel, P. Fernández, R. Osellame, J. Solis: Control of waveguide properties by tuning femtosecond laser induced compositional changes, App. Phys. Lett. 105, 131101 (2014)

    Article  CAS  Google Scholar 

  22. N. Marquestaut, Y. Petit, A. Royon, P. Mounaix, T. Cardinal, L. Canioni: Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: Analogy with photography, Adv. Funct. Mater. 24, 5824–5832 (2014)

    Article  CAS  Google Scholar 

  23. J.E. Shelby: Introduction of Glass Science and Technology, 2nd edn. (The Royal Society of Chemistry, Cambridge 2005)

    Google Scholar 

  24. R. Morena: Phosphate glasses as alternatives to Pb-based sealing frits, J. Non-Cryst. Solids 263/264, 382–387 (2000)

    Article  Google Scholar 

  25. M. Rajaram, D.E. Day: Preparation and properties of oxynitride phosphate glasses made from 27R2O·20BaO·3Al2O50P2O5, J. Non-Cryst. Solids 102, 173–180 (1988)

    Article  CAS  Google Scholar 

  26. M. Duclot, J.-L. Souquet: Glassy materials for lithium batteries: Electrochemical properties and devices performances, J. Power Sources 97/98, 610–615 (2001)

    Article  Google Scholar 

  27. T. Ishiyama, S. Suzuki, J. Nishii, T. Yamashita, H. Kawazoe, T. Omata: Proton conducting tungsten phosphate glass and its application in intermediate temperature fuel cells, Solid State Ion 262, 856–859 (2014)

    Article  CAS  Google Scholar 

  28. T. Ishiyama, J. Nishii, T. Yamashita, H. Kawazoe, T. Omata: Electrochemical substitution of sodium ions with protons in phosphate glass to fabricate pure proton conducting glass at intermediate temperatures, J. Mater. Chem. A 2, 3940–3947 (2014)

    Article  CAS  Google Scholar 

  29. S. Nakata, T. Togashi, T. Honma, T. Komatsu: Cathode properties of sodium iron phosphate glass for sodium ion batteries, J. Non-Cryst. Solids 450, 109–115 (2016)

    Article  CAS  Google Scholar 

  30. X. Yu, J.B. Bates, G.E. Jellison Jr., F.X. Hart: A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144(2), 524–532 (1997)

    Article  CAS  Google Scholar 

  31. X. Xu, Z. Wen, Z. Gu, X. Xu, Z. Lin: Lithium ion conductive glass-ceramics in the system Li1.4Al0.4(Ge1-xTix)1.6(PO4)3 (\(x=0-1.0\)), Solid State Ion. 171, 207–213 (2004)

    Article  CAS  Google Scholar 

  32. S.T. Reis, M. Karabulut, D.E. Day: Structural features and properties of lead-iron-phosphate nuclear wasteforms, J. Nucl. Mater. 304, 87–95 (2002)

    Article  CAS  Google Scholar 

  33. J.R. Van Wazer: Structure and properties of the condensed phosphates. II. A theory of the molecular structure of sodium phosphate glasses, J. Am. Chem. Soc. 72, 644–647 (1950)

    Article  Google Scholar 

  34. E. Lippmaa, M. Maegi, A. Samoson, G. Engelhardt, A. Grimmer: Structural studies of silicates by solid-state high-resolution silicon-29 NMR, J. Am. Chem. Soc. 102(15), 4889–4893 (1980)

    Article  CAS  Google Scholar 

  35. R.K. Brow: Review: The structure of simple phosphate glasses, J. Non-Cryst. Solids 263/264, 1–28 (2000)

    Article  Google Scholar 

  36. B.H. Jung, D.N. Kim, H.-S. Kim: Properties and structure of (\(50-x\))BaO-xZnO-50P2O5 glasses, J. Non-Cryst. Solids 351, 3356–3360 (2005)

    Article  CAS  Google Scholar 

  37. L. Muñoz-Senovilla, F. Muñoz: Behaviour of viscosity in metaphosphate glasses, J. Non-Cryst. Solids 385, 9–16 (2014)

    Article  CAS  Google Scholar 

  38. S. Mamedov, D. Stachel, M. Soltwitsch, D. Quitmann: Local environment and dynamics of PO4 tetrahedra in Na-Al-PO3 glasses and melts, J. Chem. Phys. 123, 124515–124527 (2005)

    Article  CAS  Google Scholar 

  39. R.J. Kirkpatrick, R.K. Brow: Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: A review, Solid State Nucl. Magn. Res. 5, 9–21 (1995)

    Article  CAS  Google Scholar 

  40. R.K. Brow, D.R. Tallant, S.T. Myers, C.C. Phifer: The short-range structure of zinc polyphosphate glass, J. Non-Cryst. Solids 191, 45–55 (1995)

    Article  CAS  Google Scholar 

  41. F. Muñoz, F. Agulló-Rueda, L. Montagne, R. Marchand, A. Durán, L. Pascual: Structure and properties of (25\(-x/2\))Li2O-(25\(-x/2\))Na2O-xPbO-50P2O5 metaphosphate glasses, J. Non-Cryst. Solids 347, 153–158 (2004)

    Article  CAS  Google Scholar 

  42. T.M. Duncan, D.C. Douglass: On the 31P chemical shift anisotropy of condensed phosphates, Chem. Phys. 87, 339–349 (1984)

    Article  CAS  Google Scholar 

  43. M. Feike, R. Graf, I. Schnell, C. Jäger, C.W. Spiess: Structure of crystalline phosphates from 31P Double-quantum NMR spectroscopy, J. Am. Chem. Soc. 118, 9631–9634 (1996)

    Article  CAS  Google Scholar 

  44. P. Rajbhandari, Y. Chen, B. Doumert, L. Montagne, G. Tricot: Investigation of zinc alkali pyrophosphate glasses. Part II: Local and medium range orders analysed by 1-D/2-D NMR, Mat. Chem. Phys. 155, 23–29 (2015)

    Article  CAS  Google Scholar 

  45. R. Witter, P. Hartmann, J. Vögel, C. Jäger: Measurements of chain length distributions in calcium phosphate glasses using 2-D 31P double quantum NMR, Solid State Nucl. Magn. Reson. 13, 189–200 (1998)

    Article  CAS  Google Scholar 

  46. F. Fayon, G. Le Saout, L. Emsley, D. Massiot: Through-bond phosphorus-phosphorus connectivities in crystalline and disordered phosphates by solid-state NMR, Chem. Commun. 2(16), 1702–1703 (2002)

    Article  Google Scholar 

  47. F. Fayon, I.J. King, R.K. Harris, J.S.O. Evans, D. Massiot: Application of the through-bond correlation NMR experiment to the characterization of crystalline and disordered phosphates, C. R. Chim. 7, 351–361 (2004)

    Article  CAS  Google Scholar 

  48. J. Ren, H. Eckert: Applications of DQ-DRENAR for the structural analysis of phosphate glasses, Solid State Nucl. Magn. Reson. 72, 140–147 (2015)

    Article  CAS  Google Scholar 

  49. P. Guerry, M.E. Smith, S.P. Brown: 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: Revealing J coupling and chemical shift two-dimensional correlations in disordered solids, J. Am. Chem. Soc. 131, 11861–11874 (2009)

    Article  CAS  Google Scholar 

  50. M. Lahaye, B. Doumert, B. Revel, K.B. Tayeb, H. Vezin, G. Tricot: Application of magnetic resonance spectroscopies to the xZnO-(100-x)NaPO3 Glass System: Glass network organization and effect of Co2+ doping, J. Phys. Chem. C 119, 17288–17297 (2015)

    Article  CAS  Google Scholar 

  51. F. Moreau, A. Durán, F. Muñoz: Structure and properties of high Li2O-containing aluminophosphate glasses, J. Eur. Ceram. Soc. 29, 1895–1902 (2009)

    Article  CAS  Google Scholar 

  52. L. Van Wüllen, G. Tricot, S. Wegner: An advanced NMR protocol for the structural characterization of aluminophosphate glasses, Solid State Nucl. Mag. Reson. 32, 44–52 (2007)

    Article  CAS  Google Scholar 

  53. F. Muñoz, L. Montagne, L. Pascual, A. Durán: Composition and structure effects on the properties of lithium borophosphate glasses showing boron anomaly, J. Non-Cryst. Solids 355, 2571–2577 (2009)

    Article  CAS  Google Scholar 

  54. M. Zeyer, L. Montagne, V. Kostoj, G. Palavit, D. Prochnow, C. Jaeger: 17O nuclear magnetic resonance study of Na2O-P2O5 glasses, J. Non-Cryst. Solids 311, 223–232 (2002)

    Article  CAS  Google Scholar 

  55. A. Flambard, L. Montagne, L. Delevoye: A new 17O-isotopic enrichment method for the NMR characterisation of phosphate compounds, Chem. Commun. 3426–3428 (2006)

    Google Scholar 

  56. A. Flambard, L. Montagne, L. Delevoye, G. Palavit, J.-P. Amoreaux, J.-J. Videau: Solid-state NMR study of mixed-network sodium-niobium phosphate glasses, J. Non-Cryst. Solids 345/346, 75–79 (2004)

    Article  CAS  Google Scholar 

  57. R.E. Dinnebier, S.J.L. Billingue (Eds.): Powder Diffraction: Theory and Practice (Royal Society of Chemistry, Cambridge 2008)

    Google Scholar 

  58. U. Hoppe, G. Walter, R. Kranold, D. Stachel: Structural specifics of phosphate glasses probed by diffraction methods: A review, J. Non-Cryst. Solids 263/264, 29–47 (2000)

    Article  Google Scholar 

  59. Y. Waseda: The Structure of Non-Crystalline Materials (McGraw-Hill, New York 1980)

    Google Scholar 

  60. U. Hoppe, D. Stachel, D. Beyer: Oxygen coordination of metal ions in phosphate and silicate glasses studied by a combination of x-ray and neutron diffraction, Phys. Scr. T57, 122–126 (1995)

    Article  CAS  Google Scholar 

  61. E. Matsubara, K. Sugiyama, Y. Waseda, M. Ashizuka, E. Ishida: Structural analysis of zinc metaphosphate glass by anomalous x-ray scattering, J. Mater. Sci. Lett. 9, 14–16 (1990)

    Article  CAS  Google Scholar 

  62. A. Balerna, M. Bionducci, A. Falqui, G. Licheri, C. Meneghini, G. Navarra, M. Bettinelli: A structural study of Sr metaphosphate glass by anomalous x-ray scattering and EXAFS spectroscopy, J. Non-Cryst. Solids 232/234, 607–612 (1998)

    Article  Google Scholar 

  63. P.H. Gaskell, J. Zhao, P. Boden, P. Chieux: Structure of a copper sodium phosphate glass by neutron scattering with isotopic substitution, J. Non-Cryst. Solids 150, 80–86 (1992)

    Article  CAS  Google Scholar 

  64. U. Hoppe, E. Metwalli, R.K. Brow, J. Neuefeind: High-energy x-ray diffraction study of La co-ordination in lanthanum phosphate glasses, J. Non-Cryst. Solids 297, 263–274 (2002)

    Article  CAS  Google Scholar 

  65. U. Hoppe, D. Ilieva, J. Neuefeind: The structure of gallium phosphate glasses by high-energy x-ray diffraction, Z. Naturforsch. 57a, 709–715 (2002)

    Article  Google Scholar 

  66. U. Hoppe, M. Karabulut, E. Metwalli, R.K. Brow, P. Jovari: The Fe–O coordination in iron phosphate glasses by x-ray diffraction with high energy photons, J. Phys. Condens. Matter. 15, 6143–6153 (2003)

    Article  CAS  Google Scholar 

  67. U. Hoppe, R. Kranold, A. Ghosh, C. Landron, J. Neuefeind, P. Jovari: Environments of lead cations in oxide glasses probed by x-ray diffraction, J. Non-Cryst. Solids 328, 146–156 (2003)

    Article  CAS  Google Scholar 

  68. U. Hoppe, Y. Dimitriev, P. Jovari: Structure of zinc phosphate glasses of 75 and 80 mol% ZnO content studied by x-ray diffraction and reverse Monte Carlo simulations, Z. Naturforsch. 60a, 517–526 (2005)

    Google Scholar 

  69. U. Hoppe, R.K. Brow, B.C. Tischendorf, A. Kriltz, P. Jóvári, A. Schöps, A.C. Hannon: Structure of titanophosphate glasses studied by x-ray and neutron diffraction, J. Non-Cryst. Solids 353, 1802–1807 (2007)

    Article  CAS  Google Scholar 

  70. U. Hoppe, G. Walter, A. Barz, D. Stachel, A.C. Hannon: The P–O bond lengths in vitreous P2O5 probed by neutron diffraction with high real-space resolution, J. Phys. Condens. Matter 10, 261–270 (1998)

    Article  CAS  Google Scholar 

  71. K. Suzuki, M. Ueno: Experimental discrimination between bridging and non-bridging oxygen phosphorus bonds in P2O5-Na2O glass by pulsed neutron total scattering, J. Phys. 46(C8), 261–265 (1985)

    Google Scholar 

  72. U. Hoppe, G. Walter, R. Kranold, D. Stachel: An x-ray diffraction study of the structure of vitreous P2O5, Z. Naturforsch. 53a, 93–94 (1998)

    Google Scholar 

  73. R. Gresch, W. Müller-Warmuth, H. Dutz: X-ray photoelectron spectroscopy of sodium phosphate glasses, J. Non-Cryst. Solids 34, 127–136 (1979)

    Article  CAS  Google Scholar 

  74. P. Losso, B. Schnabel, C. Jäger, U. Sternberg, D. Stachel, D.O. Smith: 31P NMR investigations of binary alkaline earth phosphate glasses of ultraphosphate composition, J. Non-Cryst. Solids 143, 265–273 (1992)

    Article  CAS  Google Scholar 

  75. R.K. Brow, C.C. Phifer, G.L. Turner, R.J. Kirkpatrick: Cation effects on 31P MAS NMR chemical shifts of metaphosphate glasses, J. Am. Ceram. Soc. 74, 1287–1290 (1991)

    Article  CAS  Google Scholar 

  76. G.N. Greaves, S.J. Gurman, L.F. Gladden, C.A. Spence, B.C. Sales, L.A. Boatner, R.N. Jenkins: A structural basis for the corrosion resistance of lead-iron-phosphate glasses: An x-ray absorption spectroscopy study, Philos. Mag. B 58, 271–283 (1988)

    Article  CAS  Google Scholar 

  77. U. Hoppe, G. Walter, D. Stachel, A.C. Hannon: Short-range order details of metaphosphate glasses studied by pulsed neutron scattering, Z. Naturforsch. 50a, 684–692 (1995)

    Google Scholar 

  78. U. Hoppe, G. Walter, D. Stachel, A.C. Hannon: Short-range order in KPO3 glass studied by neutron and x-ray diffraction, Z. Naturforsch. 51a, 179–186 (1996)

    Article  Google Scholar 

  79. T. Uchino, Y. Ogata: Ab-initio molecular orbital calculations on the electronic structure of phosphate glasses. Binary alkali metaphosphate glasses, J. Non-Cryst. Solids 191, 56–70 (1995)

    Article  CAS  Google Scholar 

  80. U. Hoppe, G. Walter, D. Stachel: The short range order of metaphosphate glasses investigated by x-ray diffraction, Phys. Chem. Glasses 33, 216–221 (1992)

    CAS  Google Scholar 

  81. U. Hoppe, G. Walter, R. Kranold, D. Stachel, A. Barz: The dependence of structural peculiarities in binary phosphate glasses on their network modifier content, J. Non-Cryst. Solids 192/193, 28–31 (1995)

    Article  Google Scholar 

  82. J.J. Hudgens, S.W. Martin: Glass transition and infrared spectra of low alkali, anhydrous lithium phosphate glasses, J. Am. Ceram. Soc. 76, 1691–1696 (1993)

    Article  CAS  Google Scholar 

  83. J.J. Hudgens: The Structure and Properties of Anhydrous Alkali Ultra-Phosphate Glasses, Ph.D. Thesis (Iowa State Univ., Ames 1994)

    Book  Google Scholar 

  84. U. Hoppe, R. Kranold, D. Stachel, A. Barz, A.C. Hannon: A neutron and x-ray diffraction study of the structure of the LaP3O9 glass, J. Non-Cryst. Solids 232–234, 44–50 (1998)

    Article  Google Scholar 

  85. U. Hoppe, R. Kranold, D. Stachel, J. Neuefeind: Oxygen coordination of modifier cations in metaphosphate glasses probed by high energy x-ray diffraction, Phosphorus Res. Bull. 10, 546–551 (1999)

    Article  CAS  Google Scholar 

  86. A. Musinu, G. Paschina, G. Piccaluga, G. Pinna: Short range order of metaphosphate glasses by x-ray diffraction, J. Non-Cryst. Solids 177, 97–102 (1994)

    Article  CAS  Google Scholar 

  87. S.C. Moss, D.L. Price: Random packing of structural units and the first sharp diffraction peak in glasses. In: Physics of Disordered Materials, ed. by D. Adler, H. Fritzsche, S.R. Ovshinsky (Plenum, New York 1985) pp. 77–94

    Chapter  Google Scholar 

  88. S.R. Elliott: Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses, J. Non-Cryst. Solids 182, 40–48 (1995)

    Article  CAS  Google Scholar 

  89. P.H. Gaskell, D.J. Wallis: Medium-range order in silica, the canonical network glass, Phys. Rev. Lett. 76, 66–69 (1996)

    Article  CAS  Google Scholar 

  90. G. Walter, U. Hoppe, T. Baade, R. Kranold, D. Stachel: Intermediate-range order in MeO-P2O5 glasses, J. Non-Cryst. Solids 217, 299–307 (1997)

    Article  CAS  Google Scholar 

  91. K. Suzuya, D.L. Price, C.-K. Loong, S.W. Martin: Structure of vitreous P2O5 and alkali phosphate glasses, J. Non-Cryst. Solids 232– 234, 650–657 (1998)

    Article  Google Scholar 

  92. K. Suzuya, D.L. Price, C.-K. Loong, S. Kohara: The structure of magnesium phosphate glasses, J. Phys. Chem. Solids 60, 1457–1460 (1999)

    Article  CAS  Google Scholar 

  93. K. Suzuya, K. Itoh, A. Kajinami, C.-K. Loong: The structure of binary zinc phosphate glasses, J. Non-Cryst. Solids 345/346, 80–87 (2004)

    Article  CAS  Google Scholar 

  94. H. Rietveld: A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  95. R.L. McGreevy, L. Pusztai: Reverse Monte Carlo simulation: A new technique for the determination of disordered structures, Mol. Simul. 1, 359–367 (1988)

    Article  Google Scholar 

  96. R.L. McGreevy: Reverse Monte Carlo modelling, J. Phys. Condens. Matter 13, R877–R914 (2001)

    Article  CAS  Google Scholar 

  97. B.J. Alder, T.E. Wainwright: Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459–466 (1959)

    Article  CAS  Google Scholar 

  98. A.N. Cormack, Y. Cao: Molecular dynamics simulation of silicate glasses, Mol. Eng. 6, 183–227 (1996)

    Article  CAS  Google Scholar 

  99. A.K. Soper: Test of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water, Mol. Phys. 99, 1503–1516 (2001)

    Article  CAS  Google Scholar 

  100. A.K. Soper: Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement, Phys. Rev. B 72, 104204–104216 (2005)

    Article  CAS  Google Scholar 

  101. K.M. Wetherall, D.M. Pickup, R.J. Newport, G. Mountjoy: The structure of calcium metaphosphate glass obtained from x-ray and neutron diffraction and reverse Monte Carlo modelling, J. Phys. Condens. Matter 21, 35109 (2009)

    Article  CAS  Google Scholar 

  102. A. Tilocca: Models of structure, dynamics and reactivity of bioglasses: A review, J. Mater. Chem. 20, 6848–6858 (2010)

    Article  CAS  Google Scholar 

  103. Y. Shaharyar, E. Wein, J.-J. Kim, R.E. Youngman, F. Muñoz, H.-W. Kim, A. Tiloccah, A. Goel: Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses, J. Mater. Chem. B 3, 9360–9373 (2015)

    Article  CAS  Google Scholar 

  104. J.K. Christie, R.I. Ainsworth, N.H. de Leeuw: Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses, Biomaterials 35, 6164–6171 (2014)

    Article  CAS  Google Scholar 

  105. E.A. Ruben, M.S. Chapman, J.D. Evanseck: Hydrogen bonding mediated by chemical interactions determines hydration enthalpy differences of phosphate water clusters, J. Phys. Chem. A 111, 10804–10814 (2007)

    Article  CAS  Google Scholar 

  106. F. Delahaye, L. Montagne, G. Palavit, J.C. Touray, P. Baillif: Acid dissolution of sodium-calcium metaphosphate glasses, J. Non-Cryst. Solids 242, 25–32 (1998)

    Article  CAS  Google Scholar 

  107. D.E. Day, Z. Wu, C.S. Ray, P. Hrma: Chemically durable iron phosphate glass wasteforms, J. Non-Cryst. Solids 241, 1–12 (1998)

    Article  CAS  Google Scholar 

  108. ASTM: ASTM C1285–14: Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) (ASTM International, West Conshohoken 2014)

    Google Scholar 

  109. B.C. Bunker, G.W. Arnold, J.A. Wilder: Phosphate glass dissolution in aqueous solutions, J. Non-Cryst. Solids 64, 291–316 (1984)

    Article  CAS  Google Scholar 

  110. H. Gao, T. Tan, D. Wang: Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium, J. Controll. Release 96, 29–36 (2004)

    Article  CAS  Google Scholar 

  111. F. Döhler, A. Mandlule, L. Van Wüllen, M. Friedrich, D.S. Brauer: 31P NMR characterization of phosphate fragments during dissolution of calcium sodium phosphate glasses, J. Mater. Chem. B 3, 1125–1134 (2015)

    Article  CAS  Google Scholar 

  112. P.E. Gray, L.C. Klein: The chemical durability of sodium ultraphosphate glasses, Glass Technol. 24(4), 202–206 (1983)

    CAS  Google Scholar 

  113. N. Mascaraque, A. Durán, F. Muñoz: Effect of fluorine and nitrogen on the chemical durability of lithium phosphate glasses, J. Non-Cryst. Solids 417/418, 60–65 (2015)

    Article  CAS  Google Scholar 

  114. H. Takebe, Y. Baba, M. Kuwabara: Dissolution behavior of ZnO-P2O5 glasses in water, J. Non-Cryst. Solids 352, 3088–3094 (2006)

    Article  CAS  Google Scholar 

  115. R. Marchand: Mise en évidence de verres de phosphates contenant de l'azote, C. R. Acad. Sci. Paris 294, 91–94 (1982)

    CAS  Google Scholar 

  116. S. Hampshire, M.J. Pomeroy: Grain boundary glasses in silicon nitride: A review of chemistry, properties and crystallisation, J. Eur. Ceram. Soc. 32, 1925–1932 (2012)

    Article  CAS  Google Scholar 

  117. F. Muñoz, A. Durán, L. Pascual, R. Marchand: Compositional and viscosity influence on the nitrogen/oxygen substitution reactions in phosphate melts, Phys. Chem. Glasses 46(1), 39–45 (2005)

    Google Scholar 

  118. R. Marchand, D. Agliz, L. Boukbir, A. Quemerais: Characterization of nitrogen containing phosphate glasses by x-ray photoelectron spectroscopy, J. Non-Cryst. Solids 103, 35–44 (1988)

    Article  CAS  Google Scholar 

  119. B.C. Bunker, G.W. Arnold, M. Rajaram, D.E. Day: Corrosion of phosphorus oxynitride glasses in water and humid air, J. Am. Ceram. Soc. 70, 425–430 (1987)

    Article  CAS  Google Scholar 

  120. L. Pascual, A. Durán: Preparation and properties of nitride phosphate glasses, Glastech. Ber. 64(2), 43–48 (1991)

    CAS  Google Scholar 

  121. M.R. Reidmeyer, D.E. Day: Phosphorus oxynitride glasses, J. Non-Cryst. Solids 181, 201–214 (1995)

    Article  CAS  Google Scholar 

  122. A. Le Sauze, R. Marchand: Chemically durable nitride phosphate glasses resulting from nitrogen/oxygen substitution within PO4 tetrahedra, J. Non-Cryst. Solids 263/264, 285–292 (2000)

    Article  Google Scholar 

  123. G.L. Paraschiv, F. Muñoz, L.R. Jensen, Y. Yue, M. Smedskjaer: Impact of nitridation of metaphosphate glasses on liquid fragility, J. Non-Cryst. Solids 441, 22–28 (2016)

    Article  CAS  Google Scholar 

  124. M.R. Reidmeyer, D.E. Day: Preparation and properties of nitrogen-doped phosphate glasses, J. Am. Ceram. Soc. 68(8), C-188–C-190 (1985)

    Article  Google Scholar 

  125. R.K. Brow, M.R. Reidmeyer, D.E. Day: Oxygen bonding in nitrided sodium- and lithium-metaphosphate glasses, J. Non-Cryst. Solids 99, 178–189 (1988)

    Article  CAS  Google Scholar 

  126. A. Le Sauze, L. Montagne, G. Palavit, F. Fayon, R. Marchand: X-ray photoelectron spectroscopy and nuclear magnetic resonance structural study of phosphorus oxynitride glasses ‘LiNaPON', J. Non-Cryst. Solids 263/264, 139–145 (2000)

    Article  Google Scholar 

  127. F. Muñoz, L. Pascual, A. Durán, J. Rocherullé, R. Marchand: Alkali and alkali-lead oxynitride phosphate glasses : A comparative structural study by NMR and XPS, C. R. Chim. 5, 731–738 (2002)

    Article  Google Scholar 

  128. F. Muñoz, L. Pascual, A. Durán, L. Montagne, G. Palavit, R. Berjoan, R. Marchand: Structural of phosphorus oxynitride glasses LiNaPbPON by nuclear magnetic resonance and x-ray photoelectron spectroscopy, J. Non-Cryst. Solids 324, 142–149 (2003)

    Article  CAS  Google Scholar 

  129. F. Muñoz, L. Pascual, A. Durán, R. Berjoan, R. Marchand: Validation of the mechanism of nitrogen/oxygen substitution in Li-Na-Pb-P-O-N oxynitride phosphate glasses, J. Non-Cryst. Solids 352, 3947–3951 (2006)

    Article  CAS  Google Scholar 

  130. F. Muñoz: Kinetic analysis of the substitution of nitrogen for oxygen in phosphate glasses, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 52(4), 181–186 (2011)

    Google Scholar 

  131. F. Muñoz, L. Delevoye, L. Montagne, T. Charpentier: New insights into the structure of oxynitride NaPON phosphate glasses by 17-oxygen NMR, J. Non-Cryst. Solids 363, 134–139 (2013)

    Article  CAS  Google Scholar 

  132. F. Muñoz, A. Durán, L. Pascual: Synthesis and properties of nitrided phosphate glasses in the system R2O-R'O-PbO-P2O5 (R, R'=Li, Na), Phys. Chem. Glasses 43C, 113–118 (2002)

    Google Scholar 

  133. Q. Riguidel, F. Muñoz: Effect of nitridation on the aqueous dissolution of Na2O-K2O-CaO-P2O5 metaphosphate glasses, Acta Biomater 7, 2631–2636 (2011)

    Article  CAS  Google Scholar 

  134. B. Wang, B.S. Kwak, B.C. Sales, J.B. Bates: Ionic conductivities and structure of lithium phosphorus oxynitride glasses, J. Non-Cryst. Solids 183, 297–306 (1995)

    Article  CAS  Google Scholar 

  135. R.K. Brow, D.R. Tallant: Structural design of sealing glasses, J. Non-Cryst. Solids 222, 396–406 (1997)

    Article  CAS  Google Scholar 

  136. J. Rocherullé, J. Massera, H. Oudadesse, L. Calvet, J. Trolès, X.H. Zhang: Heat capacities of crystalline and glassy lithium metaphosphate up to the transition region, J. Therm. Anal. Calorim. 123, 401–407 (2016)

    Article  CAS  Google Scholar 

  137. S. Inaba, S. Oda, K. Morinaga: Heat capacity of oxide glasses measured by AC calorimetry, J. Non-Cryst. Solids 306, 42–49 (2002)

    Article  CAS  Google Scholar 

  138. J.J. Hudgens, R.K. Brow: Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses, J. Non-Cryst. Solids 223, 21–31 (1998)

    Article  CAS  Google Scholar 

  139. T.M. Alam, S. Conzone, R.K. Brow, T.J. Boyle: 6Li, 7Li nuclear magnetic resonance investigation of lithium coordination in binary phosphate glasses, J. Non-Cryst. Solids 258, 140–154 (1999)

    Article  CAS  Google Scholar 

  140. R.G. Frieser: A review of solder glasses, Electrocompon. Sci. Technol. 2, 163–199 (1975)

    Article  Google Scholar 

  141. I.W. Donald: Preparation, properties and chemistry of glass and glass-ceramic-to-metal seals and coatings, J. Mater. Sci. 28, 2841–2886 (1993)

    Article  CAS  Google Scholar 

  142. J.A. Wilder, J.T. Healey, B.C. Bunker: Phosphate glass-ceramics: Formation, properties, and application. In: Nucleation and crystallization in glasses, Advances in Ceramics, Vol. 4, ed. by J.H. Simmons (American Ceramic Society, Columbus 1982) pp. 313–326

    Google Scholar 

  143. T.H. Wang, P.F. James: A new machinable phosphate-based glass ceramic. In: Proc. 2nd Int. Conf. New Mater. Appl, Vol. 111, ed. by D. Holland (University of Warwick, Bristol 1990) pp. 401–410

    Google Scholar 

  144. I.W. Donald, P.M. Mallinson, B.L. Metcalfe, L.A. Gerrard, J.A. Fernie: Recent developments in the preparation, characterization and applications of glass and glass-ceramic-to-metal seals and coatings, J. Mater. Sci. 46, 1975–2000 (2011)

    Article  CAS  Google Scholar 

  145. A.E. Marino, S.R. Arrasmith, L.L. Gregg, S.D. Jacobs, G. Chen, Y. Duc: Durable phosphate glasses with lower transition temperatures, J. Non-Cryst. Solids 289, 37–41 (2001)

    Article  CAS  Google Scholar 

  146. D. Ehrt: Phosphate and fluoride-phosphate optical glasses–properties, structure and applications, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 56(6), 217–234 (2015)

    Google Scholar 

  147. E.T.Y. Lee, E.R.M. Taylor: Thermo-optic coefficients of potassium alumino-metaphosphate glasses, J. Non-Cryst. Solids 65, 1187–1192 (2004)

    CAS  Google Scholar 

  148. A.K. Varshneya: Fundamentals of Inorganic Glasses (Academic, London 1994)

    Google Scholar 

  149. P.R. Ehrmann, K. Carlson, J.H. Campbell, C.A. Click, R.K. Brow: Neodymium fluorescence quenching by hydroxyl groups in phosphate laser glasses, J. Non-Cryst. Solids 349, 105–114 (2004)

    Article  CAS  Google Scholar 

  150. J.S. Hayden, M.K. Aston, S.A. Payne, M.L. Elder, J.H. Campbell: Laser and thermo-physical properties of Nd-doped phosphate glasses, Proc. SPIE 1761, 162–173 (1992)

    Article  Google Scholar 

  151. G. Ofelt: Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37, 511–520 (1962)

    Article  CAS  Google Scholar 

  152. B. Judd: Optical absorption intensities of rare-earth ions, Phys. Rev. 127, 750–761 (1962)

    Article  CAS  Google Scholar 

  153. W.F. Krupke: Induced-emission cross sections in neodymium laser glasses, IEEE J. Quantum Electron. QE-10, 450–457 (1974)

    Article  Google Scholar 

  154. C. Thorsness, T.I. Suratwala, R.A. Steele, J.H. Campbell, J.S. Hayden, S. Pucilowski, K. Suzuki: Dehydroxylation of phosphate laser glass, Proc. SPIE 4102, 175–194 (2000)

    Article  CAS  Google Scholar 

  155. P. Ehrmann, J. Campbell, T. Suratwala, J. Hayden, D. Krashkevich, K. Takeuchi: Optical loss and Nd3+ non-radiative relaxation by Cu, Fe and several rare-earth impurities in phosphate laser glasses, J. Non-Cryst. Solids 263, 251–262 (2000)

    Article  Google Scholar 

  156. V. Arbuzov, Y.K. Fyodorov, S. Kramarev, S. Lunter, S. Nikitina, A. Pozharskii, A. Shashkin, A. Semyonov, V. Ter-Nersesyants, A. Charukhchev: Neodymium phosphate glasses for the active elements of a 128 channel laser facility, Glass Technol. 46, 67–70 (2005)

    CAS  Google Scholar 

  157. L. Hu, S. Chen, J. Tang, B. Wang, T. Meng, W. Chen, L. Wen, J. Hu, S. Li, Y. Xu, Y. Jiang, J. Zhang, Z. Jiang: Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility, High Power Laser Sci. Eng. 2, 1–6 (2014)

    Article  CAS  Google Scholar 

  158. E.A. Abou Neel, W. Chrzanowski, D.M. Pickup, L.A. O'Dell, N.J. Mordan, R.J. Newport, M.E. Smith, J.C. Knowles: Structure and properties of strontium-doped phosphate-based glasses, J. R. Soc. Interface 6, 435–446 (2009)

    Article  CAS  Google Scholar 

  159. E.A. Abou Neel, I. Ahmed, J.J. Blaker, A. Bismarck, A.R. Boccaccini, M.P. Lewis, S.N. Nazhat, J.C. Knowles: Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres, Acta Biomater 1, 553–563 (2005)

    Article  CAS  Google Scholar 

  160. E.A. Abou Neel, W. Chrzanowski, J.C. Knowles: Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses, Acta Biomater 4, 523–534 (2008)

    Article  CAS  Google Scholar 

  161. M. Navarro, M.P. Ginebra, J.A. Planell: Cellular response to calcium phosphate glasses with controlled solubility, J. Biomed. Mater. Res. A 67, 1009–1015 (2003)

    Article  CAS  Google Scholar 

  162. D. Furniss, A.B. Seddon: Towards monomode proportioned fibreoptic preforms by extrusion, J. Non-Cryst. Solids 256/257, 232–236 (1999)

    Article  Google Scholar 

  163. F.T. Wallenberger, N.E. Weston: Glass fibers from high and low viscosity melts, Mater. Res. Soc. Symp. Proc. 702, 165–172 (2002)

    CAS  Google Scholar 

  164. J. Choueka, J.L. Charvet, H. Alexander, Y.O. Oh, G. Joseph, N.C. Blumenthal, W.C. LaCourse: Effect of annealing temperature on the degradation of reinforcing fibers for absorbable implants, J. Biomed. Mater. Res. 29, 1309–1315 (1995)

    Article  CAS  Google Scholar 

  165. I. Ahmed, C.A. Collins, M.P. Lewis, I. Olsen, J.C. Knowles: Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, Biomaterials 25, 3223–3232 (2004)

    Article  CAS  Google Scholar 

  166. I. Ahmed, S.S. Shaharuddin, N. Sharmin, D. Furniss, C. Rudd: Core/clad phosphate glass fibres containing iron and/or titanium, Biomed. Glasses 1, 20–30 (2015)

    Article  Google Scholar 

  167. F. Ungaro, R. d'Emmanuele di Villa Bianca, C. Giovino, A. Miro, R. Sorrentino, F. Quaglia, M.I. La Rotonda: Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: In vivo deposition and hypoglycaemic activity after delivery to rat lungs, J. Control. Release 135, 25–34 (2009)

    Article  CAS  Google Scholar 

  168. T. Rouxel: Elastic properties of glasses: A multiscale approach, C. R. Méc. 334, 743–753 (2006)

    Article  CAS  Google Scholar 

  169. M. Goldstein, T.H. Davies: Glass fibers with oriented chain molecules, J. Am. Ceram. Soc. 38, 223–226 (1955)

    Article  CAS  Google Scholar 

  170. S. Inaba, H. Hosono, S. Ito: Entropic shrinkage of an oxide glass, Nat. Mater. 14, 312–317 (2015)

    Article  CAS  Google Scholar 

  171. I. Ahmed, P.S. Cronin, E.A. Abou Neel, A.J. Parsons, J.C. Knowles, C.D. Rudd: Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite, J. Biomed. Mater. Res. B. Appl. Biomater. 89, 18–27 (2009)

    Article  CAS  Google Scholar 

  172. I. Ahmed, I. Jones, A. Parsons, J. Bernard, J. Farmer, C. Scotchford, G. Walker, C. Rudd: Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture, J. Mater. Sci. Mater. Med. 22, 1825–1834 (2011)

    Article  CAS  Google Scholar 

  173. A.Z. Kharazi, M.H. Fathi, F. Bahmany: Design of a textile composite bone plate using 3-D-finite element method, Mater. Design 31, 1468–1474 (2010)

    Article  CAS  Google Scholar 

  174. S.L. Evans, P.J. Gregson: Composite technology in load-bearing orthopaedic implants, Biomaterials 19, 1329–1342 (1998)

    Article  CAS  Google Scholar 

  175. N. Sharmin, A.J. Parsons, C.D. Rudd, I. Ahmed: Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5, J. Biomater. Appl. 29, 639–653 (2014)

    Article  CAS  Google Scholar 

  176. R.M. Felfel, I. Ahmed, A.J. Parsons, P. Haque, G.S. Walker, C.D. Rudd: Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates, J. Biomater. Appl. 26, 765–789 (2012)

    Article  CAS  Google Scholar 

  177. R. Shah, A.C.M. Sinanan, J.C. Knowles, N.P. Hunt, M.P. Lewis: Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct, Biomaterials 26, 1497–1505 (2005)

    Article  CAS  Google Scholar 

  178. E.A. Abou Neel, I. Ahmed, J. Pratten, S.N. Nazhat, J.C. Knowles: Characterisation of antibacterial copper releasing degradable phosphate glass fibres, Biomaterials 26, 2247–2254 (2005)

    Article  CAS  Google Scholar 

  179. M. Yamaguchi, H. Oishi, Y. Suketa: Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol. 36, 4007–4012 (1987)

    Article  CAS  Google Scholar 

  180. C. Gérard, L.-J. Bordeleau, J. Barralet, C.J. Doillon: The stimulation of angiogenesis and collagen deposition by copper, Biomaterials 31, 824–831 (2010)

    Article  CAS  Google Scholar 

  181. C. Vitale-Brovarone, G. Novajra, J. Lousteau, D. Milanese, S. Raimondo, M. Fornaro: Phosphate glass fibres and their role in neuronal polarization and axonal growth direction, Acta Biomater 8, 1125–1136 (2012)

    Article  CAS  Google Scholar 

  182. S.N. Nazhat, E.A. Abou Neel, A. Kidane, I. Ahmed, C. Hope, M. Kershaw, P.D. Lee, E. Stride, N. Saffari, J.C. Knowles, R.A. Brown: Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers, Biomacromolecules 8, 543–551 (2006)

    Article  CAS  Google Scholar 

  183. R. Felfel, I. Ahmed, A. Parsons, L. Harper, C. Rudd: Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails, J. Mater. Sci. 47, 4884–4894 (2012)

    Article  CAS  Google Scholar 

  184. R.M. Felfel, I. Ahmed, A.J. Parsons, C.D. Rudd: Bioresorbable screws reinforced with phosphate glass fibre: Manufacturing and mechanical property characterisation, J. Mech. Behav. Biomed. Mater. 17, 76–88 (2013)

    Article  CAS  Google Scholar 

  185. N.-Y. Joo, J.C. Knowles, G.-S. Lee, J.-W. Kim, H.-W. Kim, Y.-J. Son, J.K. Hyun: Effects of phosphate glass fiber–collagen scaffolds on functional recovery of completely transected rat spinal cords, Acta Biomater 8, 1802–1812 (2012)

    Article  CAS  Google Scholar 

  186. R. Kayacan: The effect of staining on the monotonic tensile mechanical properties of human cortical bone, J. Anat. 211, 654–661 (2007)

    Article  Google Scholar 

  187. F.G. Evans: Mechanical properties and histology of cortical bone from younger and older men, Anat. Rec. 185, 1–11 (1976)

    Article  CAS  Google Scholar 

  188. C.A. Scotchford, M. Shataheri, P.S. Chen, M. Evans, A.J. Parsons, G.A. Aitchison, C. Efeoglu, J.L. Burke, A. Vikram, S.E. Fisher, C.D. Rudd: Repair of calvarial defects in rats by prefabricated, degradable, long fibre composite implants, J. Biomed. Mater. Res. A 96, 230–238 (2010)

    Google Scholar 

  189. A. Alani, J.C. Knowles, W. Chrzanowski, Y.L. Ng, K. Gulabivala: Ion release characteristics, precipitate formation and sealing ability of a phosphate glass-polycaprolactone-based composite for use as a root canal obturation material, Dent. Mater. 25, 400–410 (2009)

    Article  CAS  Google Scholar 

  190. T. Ohtomo, F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago: Electrical and electrochemical properties of Li2S-P2S5-P2O5 glass-ceramic electrolytes, J. Power Sources 146, 715–718 (2005)

    Article  CAS  Google Scholar 

  191. S. Chenu, R. Lebullenger, P. Bérnard-Rocherullé, G. Calvez, O. Guillou, J. Rocherullé, A. Kidari, M.J. Pomeroy, S. Hampshire: Glass reactive sintering as an alternative route for the synthesis of NZP glass-ceramics, J. Mater. Sci. 47, 486–492 (2012)

    Article  CAS  Google Scholar 

  192. G. Delaizir, V. Seznec, P. Rozier, C. Surcin, P. Salles, M. Dollé: Electrochemical performances of vitreous materials in the system Li2O-V2O5-P2O5 as electrode for lithium batteries, Solid State Ion 237, 22–27 (2013)

    Article  CAS  Google Scholar 

  193. S.W. Martin, C.A. Angell: Dc and Ac conductivity in wide composition range Li2O-P2O5 glasses, J. Non-Cryst. Solids 83, 185–207 (1986)

    Article  CAS  Google Scholar 

  194. H. Takahashi, H. Nakanii, T. Sakuma, Y. Onoda: Sodium ion motion in NaI-AgPO3 glasses, Solid State Ion 179, 2137–2141 (2008)

    Article  CAS  Google Scholar 

  195. A.C.M. Rodrigues, M.L.F. Nascimento, C.B. Bragatto, J.-L. Souquet: Charge carrier mobility and concentration as a function of composition in AgPO3-AgI glasses, J. Chem. Phys. 135, 234504 (2011)

    Article  CAS  Google Scholar 

  196. O.L. Anderson, D.A. Stuart: Calculation of activation energy of ionic conductivity in silica glasses by classical methods, J. Am. Ceram. Soc. 37(12), 573–580 (1954)

    Article  CAS  Google Scholar 

  197. M.D. Ingram, C.T. Moynihan, A.V. Lesikar: Ionic conductivity and the weak electrolyte theory of glass, J. Non-Cryst. Solids 38/39, 371–376 (1980)

    Article  Google Scholar 

  198. B. Santic, A. Mogus-Milankovic, D.E. Day: The dc electrical conductivity of iron phosphate glasses, J. Non-Cryst. Solids 296, 65–73 (2001)

    Article  CAS  Google Scholar 

  199. M. Wasiucionek, J.E. Garbarczyk, P. Kurek, J. Jakubowski: Electrical properties of glasses of the Na2O-V2O5-P2O5 system, Solid State Ion 70/71, 346–349 (1994)

    Article  Google Scholar 

  200. J.E. Garbarczyk, P. Jozwiak, M. Wasiucionek, J.L. Nowinski: Effect of nanocrystallization on the electronic conductivity of vanadate-phosphate glasses, Solid State Ion 177, 2585–2588 (2006)

    Article  CAS  Google Scholar 

  201. A.K. Kercher, J.O. Ramey, K.J. Carroll, J.O. Kiggans, N.J. Dudney, R.A. Meisner, L.A. Boatner, G.M. Weith: Mixed polyanion glass cathodes: Iron phosphate vanadate glasses, J. Electrochem. Soc. 161(14), A2210–A2215 (2014)

    Article  CAS  Google Scholar 

  202. A.K. Kercher, J.A. Kolopus, K.J. Carroll, R.R. Unocic, S. Kirklin, C. Wolverton, S.L. Stooksbury, L.A. Boatner, N.J. Dudney: Mixed polyanion glass cathodes: Glass-state conversion reactions, J. Electrochem. Soc. 163(2), A131–A137 (2016)

    Article  CAS  Google Scholar 

  203. J.C. Bazan, J.A. Duffy, M.D. Ingram, M.R. Mallace: Conductivity anomalies in tungstate-phosphate glasses: Evidence for an ion-polaron interaction?, Solid State Ion 86–88, 497–501 (1996)

    Article  Google Scholar 

  204. I. Oliva, A. Masuno, H. Inoue, H. Tawarayama, H. Kawazoe: Mixed conduction in alkali niobium tungsten phosphate glasses, Solid State Ion 206, 405–409 (2012)

    Article  CAS  Google Scholar 

  205. Y. Abe, H. Shimakawa: Protonic conduction in alkaline earth metaphosphate glasses containing, J. Non-Cryst. Solids 51, 357–365 (1982)

    Article  CAS  Google Scholar 

  206. H. Sumi, Y. Nakano, Y. Fujishiro, T. Kasuga: Proton conduction of MO-P2O5 glasses (M = Zn,Ba) containing a large amount of water, Solid State Sci. 45, 5–8 (2015)

    Article  CAS  Google Scholar 

  207. N.J. Dudney: Addition of a thin-film inorganic electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte, J. Power Sources 89, 176–179 (2000)

    Article  CAS  Google Scholar 

  208. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans: Thin-film lithium and lithium-ion batteries, Solid State Ion 135, 33–45 (2000)

    Article  CAS  Google Scholar 

  209. S. Jacke, J. Song, L. Dimesso, J. Brötz, D. Becker, W. Jaegermann: Temperature dependent phosphorus oxynitride growth for all-solid-state batteries, J. Power Sources 196, 6911–6914 (2011)

    Article  CAS  Google Scholar 

  210. F. Muñoz: Comments on the structure of LiPON thin-film electrolytes, J. Power Sources 198, 432–433 (2012)

    Article  CAS  Google Scholar 

  211. F. Muñoz, A. Durán, L. Pascual, L. Montagne, B. Revel, A.C.M. Rodrigues: Increased electrical conductivity of LiPON glasses produced by ammonolysis, Solid State Ion 179, 574–579 (2008)

    Article  CAS  Google Scholar 

  212. N. Mascaraque, J.L.G. Fierro, A. Durán, F. Muñoz: An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses, Solid State Ion. 233, 73–79 (2013)

    Article  CAS  Google Scholar 

  213. Y. Shimonishi, T. Zhang, N. Imanishi, D. Im, D.J. Lee, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes: A study on lithium/air secondary batteries-stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions, J. Power Sources 196, 5128–5132 (2011)

    Article  CAS  Google Scholar 

  214. S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, O. Yamamoto: Study on lithium/air secondary batteries-stability of NASICON-type lithium ion conducting glass-ceramics with water, J. Power Sources 189, 371–377 (2009)

    Article  CAS  Google Scholar 

  215. X. Yu, D.E. Day, G.J. Long, R.K. Brow: Properties and structure of sodium-iron phosphate glasses, J. Non-Cryst. Solids 215, 21–31 (1997)

    Article  CAS  Google Scholar 

  216. ISO 16797:2004: Nuclear Energy-Soxhelt-Mode Chemical Disability Test-Application to Vitrified Matrixes for High-Level Radioactive Waste (International Organization for Standardization, Geneva 2004)

    Google Scholar 

  217. M.I. Ojovan, W.E. Lee: An Introduction to Nuclear Waste Immobilization (Elsevier, Amsterdam 2005)

    Google Scholar 

  218. C.W. Kim, C.S. Ray, D. Zhu, D.E. Day, D. Gombert, A. Aloy, A. Mogus-Milankovi, M. Karabulut: Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques, J. Nucl. Mater. 322, 152–164 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F. Muñoz thanks funding from projects MAT2013-48246-C2-1-P from MINECO of Spain and I-link+0959 from CSIC. I. Ahmed would like to acknowledge the Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, for provision of studentship funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Muñoz, F., Rocherullé, J., Ahmed, I., Hu, L. (2019). Phosphate Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_16

Download citation

Publish with us

Policies and ethics