Advertisement

Arbres m-aires et quadrants

Chapter
  • 232 Downloads
Part of the Mathématiques et Applications book series (MATHAPPLIC, volume 83)

Abstract

Nous présentons ici les analyses de deux types d’arbres de recherche, chacun étant une extension des arbres binaires de recherche
  • soit avec des nœuds pouvant contenir plusieurs clés, ce sont les arbres m-aires de recherche ;

  • soit avec des clés multi-dimensionnelles, ce sont les arbres quadrants qui ont été définis dans la section  3.2.2.b.

References

  1. 28.
    P. Billingsley, Probability and Measure, 3rd edn. Wiley Series in Probability and Mathematical Statistics (Wiley, New York, 1995). A Wiley-Interscience Publication.Google Scholar
  2. 36.
    B. Chauvin, N. Pouyanne, m-ary search trees when m > 26: a strong asymptotics for the space requirements. Random Struct. Algoritm. 24(2), 133–154 (2004)Google Scholar
  3. 44.
    H.-H. Chern, M. Fuchs, H.-K. Hwang, Phase changes in random point quadtrees. ACM Trans. Algorithms 3(Issue 2), Art. 12 (2007)Google Scholar
  4. 56.
    L. Devroye, Branching processes in the analysis of the height of trees. Acta Inform. 24, 277–298 (1987)MathSciNetCrossRefGoogle Scholar
  5. 61.
    L. Devroye, L. Laforest, An analysis of random d-dimensional quadtrees. SIAM J. Comput. 19(5), 821–832 (1990)MathSciNetCrossRefGoogle Scholar
  6. 84.
    P. Flajolet, M. Hoshi, Page usage in a quadtree index. BIT Numer. Math. 32, 384–402 (1992)MathSciNetCrossRefGoogle Scholar
  7. 86.
    P. Flajolet, T. Lafforgue, Search costs in quadtrees and singularity perturbation asymptotics. Discret. Comput. Geom. 12(4), 151–175 (1994)MathSciNetCrossRefGoogle Scholar
  8. 90.
    P. Flajolet, A.M. Odlyzko, Singularity analysis of generating functions. SIAM J. Discret. Math. 3(2), 216–240 (1990)MathSciNetCrossRefGoogle Scholar
  9. 94.
    P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  10. 99.
    P. Flajolet, G. Gonnet, C. Puech, J. Robson, Analytic variations on quadtrees. Algorithmica 10(6), 473–500 (1993)MathSciNetCrossRefGoogle Scholar
  11. 101.
    P. Flajolet, G. Labelle, L. Laforest, B. Salvy, Hypergeometrics and the cost structure of quadtrees. Random Struct. Algoritm. 7(2), 117–144 (1995)MathSciNetCrossRefGoogle Scholar
  12. 129.
    P. Hennequin, Analyse en moyenne d’algorithmes : Tri rapide et arbres de recherche. PhD thesis, École Polytechnique, Palaiseau, 1991, 170 pp.Google Scholar
  13. 147.
    S. Janson, Functional limit theorem for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110, 177–245 (2004)CrossRefGoogle Scholar
  14. 172.
    H. Mahmoud, Evolution of Random Search Trees (Wiley, New York, 1992)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance
  2. 2.GREYC, CNRS UMR 6072Normandie UniversitéCaen CedexFrance
  3. 3.Laboratoire DAVIDUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance

Personalised recommendations