Skip to main content

Arbres digitaux

  • Chapter
  • First Online:
Arbres pour l’Algorithmique

Part of the book series: Mathématiques et Applications ((MATHAPPLIC,volume 83))

  • 389 Accesses

Abstract

Dans ce chapitre, nous nous concentrerons uniquement sur la structure de trie. Les autres types d’arbres digitaux ne seront pas abordés sauf en exercice. Les méthodes présentées, ou du moins leurs principes, s’appliquent néanmoins à ces autres arbres. Il est de fait assez courant de confondre arbres digitaux et tries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Voir les rappels algorithmiques de l’annexe A.

  2. 2.

    Ce dictionnaire n’est pas celui de la méthode symbolique puisqu’il correspond à la décomposition récursive par préfixes du trie et non à des opérations ensemblistes ou combinatoires.

  3. 3.

    Pour les tries, dans les analyses usuelles de la longueur de cheminement externe et de la taille, cette fonction dépend seulement du cardinal \({\left \lvert \omega \right \rvert }\).

  4. 4.

    La paramétrisation est basée sur un principe analogue à celui utilisé pour le codage arithmétique en compression [227].

  5. 5.

    Nous pouvons penser par analogie aux développements impropres par exemple en base 10 : 0, 999⋯ = 1, 0000….

  6. 6.

    Toujours en admettant que cet intervalle est unique, ce qui est vrai sauf sur l’ensemble de mesure nulle constitué des extrémités des intervalles fondamentaux.

  7. 7.

    De manière un peu surprenante au premier abord, il peut y avoir plusieurs relèvements analytiques d’une même fonction. Cela ne change rien à la validité de la formule de Nörlund-Rice.

  8. 8.

    Selon les auteurs, on parle aussi de série disciplinée ou apprivoisée (en anglais tame). Ces termes signifient simplement que la série admet un domaine où ses pôles et son comportement analytique obéissent à un certain schéma.

  9. 9.

    Bien sûr nous pourrions être plus précis et donner un développement à un ordre supérieur si nous souhaitions évaluer les termes d’erreur ou les termes sous-dominants du développement asymptotique.

  10. 10.

    C’est une propriété de type Perron-Frobenius.

References

  1. J.L. Bentley, R. Sedgewick, Fast algorithms for sorting and searching strings, in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’97 (Society for Industrial and Applied Mathematics, Philadelphia, 1997), pp. 360–369

    MATH  Google Scholar 

  2. B. Bercu, D. Chafaï. Modélisation stochastique et simulation : cours et applications. Sciences sup. (Dunod, Paris, 2007). Série << Mathématiques appliquées pour le Master / SMAI >>.

    Google Scholar 

  3. E. Cesaratto, B. Vallée. Gaussian distribution of trie depth for strongly tame sources. Comb. Probab. Comput. 24(1), 54–103 (2015)

    Article  MathSciNet  Google Scholar 

  4. J. Clément, P. Flajolet, B. Vallée, The analysis of hybrid trie structures, in Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 25–27 January 1998, pp. 531–539

    Google Scholar 

  5. J. Clément, P. Flajolet, B. Vallée. Dynamical sources in information theory: a general analysis of trie structures. Algorithmica 29(1), 307–369 (2001)

    Article  MathSciNet  Google Scholar 

  6. J. Clément, T. Nguyen Thi, B. Vallée. A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms, in STACS (2013), pp. 598–609

    Google Scholar 

  7. J. Clément, T.H.N. Thi, B. Vallée. Towards a realistic analysis of some popular sorting algorithms. Comb. Probab. Comput. 24(1), 104–144 (2015). Special issue dedicated to the memory of Philippe Flajolet

    Google Scholar 

  8. L. Devroye, A probabilistic analysis of the height of tries and of the complexity of triesort. Acta Inform. 21, 229–237 (1984)

    Article  MathSciNet  Google Scholar 

  9. L. Devroye, Branching processes in the analysis of the height of trees. Acta Inform. 24, 277–298 (1987)

    Article  MathSciNet  Google Scholar 

  10. L. Devroye, A study of trie-like structures under the density model. Ann. Appl. Probab. 2(2), 402–434 (1992)

    Article  MathSciNet  Google Scholar 

  11. L. Devroye, Branching processes and their applications in the analysis of tree structures and tree algorithms, in Probabilistic Methods for Algorithmic Discrete Mathematics, ed. by M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed (Springer, Berlin, 1998)

    Google Scholar 

  12. P. Flajolet, On the performance evaluation of extendible hashing and trie searching. Acta Inform. 20, 345–369 (1983)

    Article  MathSciNet  Google Scholar 

  13. P. Flajolet, The ubiquitous digital tree, in Proceedings of 23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS 2006, Marseille, 23–25 February 2006. Lecture Notes in Computer Science, vol. 3884 (Springer, Berlin, 2006), pp. 1–22

    Google Scholar 

  14. P. Flajolet, B. Richmond, Generalized digital trees and their difference—differential equations. Random Struct. Algoritm. 3(3), 305–320 (1992)

    Article  MathSciNet  Google Scholar 

  15. P. Flajolet, R. Sedgewick, Digital search trees revisited. SIAM J. Comput. 15(3), 748–767 (1986)

    Article  MathSciNet  Google Scholar 

  16. P. Flajolet, R. Sedgewick, Mellin transforms and asymptotics: finite differences and Rice’s integrals. Theor. Comput. Sci. 144(1&2), 101–124 (1995)

    Article  MathSciNet  Google Scholar 

  17. P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  18. P. Flajolet, J.-M. Steyaert, A branching process arising in dynamic hashing, trie searching and polynomial factorization, in Automata, Languages and Programming, ed. by M. Nielsen, E.M. Schmidt. Lecture Notes in Computer Science, vol. 140 (Springer, Berlin, 1982), pp. 239–251. Proceedings of 9th ICALP Colloquium, Aarhus, July 1982

    Google Scholar 

  19. P. Flajolet, M. Régnier, D. Sotteau, Algebraic methods for trie statistics. Ann. Discret. Math. 25, 145–188 (1985). In Analysis and Design of Algorithms for Combinatorial Problems, ed. by G. Ausiello, M. Lucertini (Invited Lecture)

    Google Scholar 

  20. P. Flajolet, X. Gourdon, P. Dumas, Mellin transforms and asymptotics: harmonic sums. Theor. Comput. Sci. 144(1–2), 3–58 (1995)

    Article  MathSciNet  Google Scholar 

  21. P. Flajolet, M. Roux, B. Vallée. Digital trees and memoryless sources: from arithmetics to analysis, in Proceedings of AofA’10, DMTCS, Proc AM (2010), pp. 231–258

    Google Scholar 

  22. M. Fuchs, H.-K. Hwang, V. Zacharovas, An analytic approach to the asymptotic variance of trie statistics and related structures. Theor. Comput. Sci. 527, 1–36 (2014)

    Article  MathSciNet  Google Scholar 

  23. K. Hun, B. Vallée. Typical depth of a digital search tree built on a general source, in 2014 Proceedings of the Eleventh Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2014, Portland, 6 January 2014, pp. 1–15

    Google Scholar 

  24. H.-K. Hwang, Théorémes limites pour les structures combinatoires et les fonctions arithmétiques. PhD thesis, École polytechnique, Palaiseau, 1994

    Google Scholar 

  25. H.-K. Hwang, On convergence rates in the central limit theorems for combinatorial structures. Eur. J. Comb. 19(3), 329–343 (1998)

    Article  MathSciNet  Google Scholar 

  26. P. Jacquet, M. Régnier, Trie partitioning process: limiting distributions, in CAAP’86, ed. by P. Franchi-Zanetacchi. Proceedings of the 11th Colloquium on Trees in Algebra and Programming, Nice, LNCS, vol. 214 (Springer, Berlin, 1986), pp. 196–210

    Google Scholar 

  27. P. Jacquet, M. Régnier, New results on the size of tries. IEEE Trans. Inf. Theory 35(1), 203–205 (1989)

    Article  MathSciNet  Google Scholar 

  28. P. Jacquet, W. Szpankowski, Analysis of digital tries with markovian dependency. IEEE Trans. Inf. Theory 37(5), 1470–1475 (1991)

    Article  Google Scholar 

  29. P. Jacquet, W. Szpankowski, Autocorrelation on words and its applications: analysis of suffix trees by string-ruler approach. J. Comb. Theory (A) 66(2), 237–269 (1994)

    Google Scholar 

  30. P. Jacquet, W. Szpankowski, Asymptotic behavior of the Lempel-Ziv parsing scheme and digital search trees. Theor. Comput. Sci. 144(1–2), 161–197 (1995)

    Article  MathSciNet  Google Scholar 

  31. S. Janson, W. Szpankowski, Analysis of an asymmetric leader election algorithm. Electron. J. Comb. 9 (1997)

    Google Scholar 

  32. G. Louchard, Trie size in a dynamic list structure. Random Struct. Algoritm. 5(5), 665–702 (1994)

    Article  MathSciNet  Google Scholar 

  33. H. Mahmoud, Evolution of Random Search Trees (Wiley, New York, 1992)

    MATH  Google Scholar 

  34. N.E. Nörlund. Leçons sur les équations linéaires aux différences finies, in Collection de monographies sur la théorie des fonctions (Gauthier-Villars, Paris, 1929)

    Google Scholar 

  35. N.E. Nörlund. Vorlesungen über Differenzenrechnung (Chelsea Publishing Company, New York, 1954)

    MATH  Google Scholar 

  36. G. Park, H.-K. Hwang, P. Nicodème, W. Szpankowski, Profiles of tries. SIAM J. Comput. 38(5), 1821–1880 (2009)

    Article  MathSciNet  Google Scholar 

  37. B. Pittel, Paths in a random digital tree: limiting distributions. Adv. Appl. Probab. 18, 139–155 (1986)

    Article  MathSciNet  Google Scholar 

  38. R.F. Rice, Some practical universal noiseless coding techniques. Technical Report JPL-79–22, JPL, Pasadena (1979). http://tinyurl.com/R.F.Rice-coding-techniques

  39. M. Roux, B. Vallée, Information theory: sources, Dirichlet series, and realistic analyses of data structures, in Proceedings 8th International Conference Words 2011. EPTCS, vol. 63 (2011), pp. 199–214

    Google Scholar 

  40. D. Salomon, Data Compression: The Complete Reference (Springer, Berlin, 2007). With contributions by G. Motta and D. Bryant

    Google Scholar 

  41. R. Sedgewick, P. Flajolet, Introduction to the Analysis of Algorithms (Addison-Wesley, Reading, 1996)

    MATH  Google Scholar 

  42. R. Sedgewick, K. Wayne, Algorithms, 4th edn. (Addison-Wesley, Reading, 2011)

    Google Scholar 

  43. W. Szpankowski, Average Case Analysis of Algorithms on Sequences (Wiley, New York, 2001)

    Book  Google Scholar 

  44. B. Vallée, Dynamical sources in information theory: fundamental intervals and word prefixes. Algorithmica 29(1), 262–306 (2001)

    Article  MathSciNet  Google Scholar 

  45. B. Vallée, J. Clément, J.A. Fill, P. Flajolet, The number of symbol comparisons in quicksort and quickselect, in ICALP 2009, ed. by S. Albers et al. Part I, LNCS, vol. 5555 (Springer, Berlin, 2009), pp. 750–763

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauvin, B., Clément, J., Gardy, D. (2018). Arbres digitaux. In: Arbres pour l’Algorithmique. Mathématiques et Applications, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-93725-0_7

Download citation

Publish with us

Policies and ethics