Advertisement

Arbres, algorithmes et données

Chapter
  • 234 Downloads
Part of the Mathématiques et Applications book series (MATHAPPLIC, volume 83)

Abstract

Ce chapitre paraîtra peut-être moins formalisé que d’autres ; cela nous a semblé nécessaire pour aller vers des préoccupations pratiques algorithmiques. Nous regardons dans ce chapitre les arbres en tant que modèles de diverses situations algorithmiques : le premier exemple naturel est la représentation d’expressions de divers types, que nous abordons en section 3.1. Nous nous tournons ensuite vers les algorithmes fondamentaux de l’informatique que sont la recherche d’une clé (en section 3.2) et le tri d’un ensemble de valeurs (en section 3.3). Avec les paramètres d’arbre, que nous avons présentés en section  1.3, nous avons les outils pour analyser les performances (ou complexités) de ces algorithmes, qui utilisent directement des arbres. Nous terminons en présentant dans la section 3.4 des problèmes issus de différents domaines de l’informatique, et dont la modélisation ou l’analyse font intervenir des structures arborescentes sous-jacentes.

References

  1. 6.
    A. Apostolico, The myriad virtues of subword trees, in Combinatorial Algorithms on Words, ed. by A. Apostolico, Z. Galil. NATO Advanced Science Institute Series. Series F: Computer and Systems Sciences, vol. 12 (Springer, Berlin, 1985), pp. 85–96Google Scholar
  2. 7.
    A. Apostolico, M. Crochemore, M. Farach-Colton, Z. Galil, S. Muthukrishnan, 40 years of suffix trees. Commun. ACM 59(4), 66–73 (2016)CrossRefGoogle Scholar
  3. 13.
    M. Aumüller, M. Dietzfelbinger, Optimal partitioning for dual pivot quicksort, in Automata, Languages and Programming. LNCS, vol. 7965 (Springer, Berlin, 2013), pp. 33–44Google Scholar
  4. 14.
    C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, D. Gouyou-Beauchamps. Generating functions for generating trees. Discret. Math. 246(1–3), 29–55 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 16.
    E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, A methodology for plane tree enumeration. Discret. Math. 180(1–3), 45–64 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 17.
    E. Barcucci, A. Del Lungo, E. Pergola, Random generation of trees and other combinatorial objects. Theor. Comput. Sci. 218(2), 219–232 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 18.
    T. Bell, I.H. Witten, J.G. Cleary, Modelling for text compression. ACM Comput. Surv. 21(4), 557–591 (1989)CrossRefGoogle Scholar
  8. 21.
    J. Berstel, D. Perrin, C. Reutenauer, Codes and Automata (Encyclopedia of Mathematics and Its Applications), 1st edn. (Cambridge University Press, New York, 2009)Google Scholar
  9. 32.
    J. Capetanakis, Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theory IT-25:505–515 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 38.
    B. Chauvin, P. Flajolet, D. Gardy, B. Gittenberger, And/or trees revisited. Comb. Probab. Comput. 13(4–5), 475–497 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 43.
    B. Chauvin, D. Gardy, N. Pouyanne, D.-H. Ton That, B-urns. Lat. Am. J. Probab. Math. Stat. 13, 605–634 (2016)MathSciNetzbMATHGoogle Scholar
  12. 49.
    D. Comer, The ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–137 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 50.
    T. Cormen, C. Leiserson, R. Rivest, Introduction à l’algorithmique (Dunod, Paris, 2002)Google Scholar
  14. 51.
    T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction à l’algorithmique (Dunod, Paris, 2010)zbMATHGoogle Scholar
  15. 52.
    M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings (Cambridge University Press, New York, 2007). Téléchargeable en Français, http://www-igm.univ-mlv.fr/~mac/CHL/CHL-2011.pdf
  16. 56.
    L. Devroye, Branching processes in the analysis of the height of trees. Acta Inform. 24, 277–298 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 57.
    L. Devroye, Applications of the theory of records in the study of random trees. Acta Inform. 26, 123–130 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 60.
    L. Devroye, An analysis of random LC tries. Random Struct. Algoritm. 15, 359–375 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 66.
    J. Doyle, R. Rivest, Linear expected time of a simple union-find algorithm. Inf. Process. Lett. 5, 146–148 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 73.
    M. Durand, P. Flajolet, Loglog counting of large cardinalities, in ESA03, 11th Annual European Symposium on Algorithms, Engineering and Applications Track. Lecture Notes in Computer Science (Springer, Berlin, 2003), pp. 605–617Google Scholar
  21. 75.
    R. Fagin, J. Nievergelt, N. Pippenger, H.R. Strong, Extendible hashing - a fast access method for dynamic files. ACM Trans. Database Syst. 4(3), 315–344 (1979)CrossRefGoogle Scholar
  22. 77.
    J.A. Fill, S. Janson, The number of bit comparisons used by Quicksort: an average-case analysis. Electron. J. Probab 17(43), 1–22 (2012)MathSciNetzbMATHGoogle Scholar
  23. 78.
    J. Fill, H. Mahmoud, W. Szpankowski, On the distribution for the duration of a randomized leader election algorithm. Ann. Appl. Probab. 6(4), 1260–1283 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 79.
    P. Flajolet, On the performance evaluation of extendible hashing and trie searching. Acta Inform. 20, 345–369 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 80.
    P. Flajolet, Approximate counting: a detailed analysis. BIT Numer. Math. 25, 113–134 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 81.
    P. Flajolet, On adaptive sampling. Computing 43, 391–400 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 82.
    P. Flajolet, Counting by coin tossing, in Proceedings of Asian’04, ed. by M. Maher. Number 3321 in Lecture Notes in Computer Science (Springer, Berlin, 2004), pp. 1–12Google Scholar
  28. 85.
    P. Flajolet, P. Jacquet, Analytic models for tree communication protocols, in Flow Control of Congested Networks, ed. by A.R. Odoni, L. Bianco, G. Szegö (Springer, Berlin, 1987), pp. 223–234CrossRefGoogle Scholar
  29. 87.
    P. Flajolet, G. Martin, Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci. 31(2), 182–209 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 104.
    P. Flajolet, E. Fusy, O. Gandouet, F. Meunier, Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm, in DMTCS Proceedings, vol. AH (2007), pp. 127–146Google Scholar
  31. 107.
    H. Fournier, D. Gardy, A. Genitrini, M. Zaionc, Classical and intuitionistic logic are asymptotically identical, in Computer Science Logic, Proceedings of the 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, 11–15 September 2007, pp. 177–193Google Scholar
  32. 108.
    H. Fournier, D. Gardy, A. Genitrini, B. Gittenberger, The fraction of large random trees representing a given boolean function in implicational logic. Random Struct. Algoritm. 20(7), 875–887 (2012)zbMATHGoogle Scholar
  33. 111.
    C. Froidevaux, M.-C. Gaudel, M. Soria, Types de données et Algorithmes (McGraw Hill, Paris, 1993)zbMATHGoogle Scholar
  34. 114.
    Z. Galil, G.N. Italiano, Data structures and algorithms for disjoint set union problems. ACM Comput. Surv. 2(3) (1991)Google Scholar
  35. 115.
    D. Gardy, Random boolean expressions, in DMTCS Proceedings AF (2006), pp. 1–36. Invited paper, Colloquium on Computational Logic and Applications, Chambéry, Juin 2005Google Scholar
  36. 117.
    A. Genitrini, J. Kozik, In the full propositional logic, 5/8 of classical tautologies are intuitionistically valid. Ann. Pure Appl. Logic 163(7), 875–887 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 118.
    A. Genitrini, C. Mailler, Generalised and quotient models for random and/or trees and application to satisfiability. Algorithmica 76(4), 1106–1138 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 119.
    A. Genitrini, B. Gittenberger, V. Kraus, C. Mailler, Associative and commutative tree representations for boolean functions. Theor. Comput. Sci. 570, 70–101 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 126.
    D. Gusfield, Algorithm on Strings, Trees, and Sequences: Computer Science and Computational Biology (Cambridge University Press, New York, 1997)zbMATHCrossRefGoogle Scholar
  40. 128.
    P. Hennequin, Combinatorial analysis of quicksort algorithm. RAIRO Inform. Théor. Appl. 23(3), 317–333 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 129.
    P. Hennequin, Analyse en moyenne d’algorithmes : Tri rapide et arbres de recherche. PhD thesis, École Polytechnique, Palaiseau, 1991, 170 pp.Google Scholar
  42. 131.
    C. Hoare, Quicksort. Comput. J. 10–15 (1962)Google Scholar
  43. 145.
    P. Jacquet, W. Szpankowski, Asymptotic behavior of the Lempel-Ziv parsing scheme and digital search trees. Theor. Comput. Sci. 144(1–2), 161–197 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 156.
    D. Knuth, The Art of Computer Programming, Vol. 3 : Sorting and Searching, 2nd edn. (Addison-Wesley, Redwood City, 1998)Google Scholar
  45. 158.
    D. Knuth, A. Schonhage, The expected linearity of a simple equivalence algorithm. Theor. Comput. Sci. 6, 281–315 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 162.
    R. Kruse, A. Ryba, Data Structures and Program Design in C++ (Prentice Hall, Upper Saddle River, 2000)Google Scholar
  47. 163.
    P.-Å. Larson, Dynamic hashing. BIT Numer. Math. 18(2), 184–201 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 164.
    H. Lefmann, P. Savický. Some typical properties of large and/or boolean formulas. Random Struct. Algoritm. 10(3), 337–351 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 165.
    W. Litwin, Virtual hashing: a dynamically changing hashing, in Fourth International Conference on Very Large Data Bases, 13–15 September 1978, West Berlin, ed. by S.B. Yao (IEEE Computer Society, Washington, 1978), pp. 517–523Google Scholar
  50. 167.
    G. Louchard, The asymmetric leader election algorithm: number of survivors near the end of the game. Quaest. Math. (2015)Google Scholar
  51. 168.
    G. Louchard, H. Prodinger, M. Ward, Number of survivors in the presence of a demon. Period. Math. Hung. 64(1), 101–117 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 180.
    C. Martínez, S. Roura, Optimal sampling strategies in quicksort and quickselect. SIAM J. Comput. 31(3), 683–705 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 181.
    C. Martínez, A. Panholzer, H. Prodinger, On the number of descendants and ascendants in random search trees. Electron. J. Comb. 5(1), R20 (1998)Google Scholar
  54. 182.
    C. Martínez, D. Panario, A. Viola, Adaptive sampling strategies for quickselects. ACM Trans. Algorithms 6(3) (2010)Google Scholar
  55. 183.
    C. Martínez, M.E. Nebel, S. Wild, Analysis of branch misses in quicksort, in Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2015, San Diego, 4 January 2015, pp. 114–128Google Scholar
  56. 184.
    E.M. McCreight, A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 186.
    H. Mohamed, P. Robert, Dynamic tree algorithm. Ann. Appl. Probab. 20(1), 26–51 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 189.
    R. Morris, Counting large numbers of events in small registers. Commun. ACM 21(10), 840–842 (1978)zbMATHCrossRefGoogle Scholar
  59. 195.
    S. Nilsson, G. Karlsson, Ip-address lookup using lc-tries. IEEE J. Sel. Areas Commun. 17(6), 1083–1092 (1999)CrossRefGoogle Scholar
  60. 203.
    J.B. Paris, A. Vencovská, G.M. Wilmers, A natural prior probability distribution derived from the propositional calculus. Ann. Pure Appl. Logic 70, 243–285 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 209.
    B. Pittel, Note on the heights of random recursive trees and random m-ary search trees. Random Struct. Algoritm. 5(2), 337–347 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 217.
    H. Prodinger, How to select a loser. Discret. Math. 20, 149–159 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 224.
    U. Rösler, A limit theorem for quicksort. Theor. Inf. Appl. 25(1), 85–100 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 227.
    D. Salomon, Data Compression: The Complete Reference (Springer, Berlin, 2007). With contributions by G. Motta and D. BryantGoogle Scholar
  65. 228.
    P. Savický, Complexity and probability of some Boolean formulas. Comb. Probab. Comput. 7, 451–463 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 229.
    P. Savický, A. Woods, The number of Boolean functions computed by formulas of a given size. Random Struct. Algoritm. 13, 349–382 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 231.
    R. Sedgewick, Algorithms in C: Fundamentals, Data Structures, Sorting, Searching, 3rd edn. (Addison–Wesley, Reading, 1988)zbMATHGoogle Scholar
  68. 234.
    R. Seidel, M. Sharir, Top-down analysis of path compression. SIAM J. Comput. 34(3), 515–525 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 238.
    M. Sorensen, P. Urzyczyn, Lectures on the Curry-Howard Isomorphism (Elsevier, New York, 1998)zbMATHGoogle Scholar
  70. 241.
    R.E. Tarjan, Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 242.
    B. Tsybakov, V. Mikhailov, Free synchronous packet access in a broadcast channel with feedback. Probl. Inf. Transm. 14, 259–280 (1979)Google Scholar
  72. 244.
    E. Ukkonen, On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 246.
    B. Vallée, J. Clément, J.A. Fill, P. Flajolet, The number of symbol comparisons in quicksort and quickselect, in ICALP 2009, ed. by S. Albers et al. Part I, LNCS, vol. 5555 (Springer, Berlin, 2009), pp. 750–763Google Scholar
  74. 247.
    P. Weiner, Linear pattern matching algorithm, in IEEE 14th Annual Symposium on Switching and Automata Theory (1973), pp. 1–11Google Scholar
  75. 249.
    J. West, Generating trees and the Catalan and Schröder numbers. Discret. Math. 157, 363–374 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 252.
    A. Woods, Coloring rules for finite trees, and probabilities of monadic second order sentences. Random Struct. Algoritm. 10, 453–485 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 253.
    W. Wu, Packet Forwarding Technologies (Auerbach Publications, New York, 2007)CrossRefGoogle Scholar
  78. 254.
    A. Yao, On random 2–3 trees. Acta Inform. 9, 159–170 (1978)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance
  2. 2.GREYC, CNRS UMR 6072Normandie UniversitéCaen CedexFrance
  3. 3.Laboratoire DAVIDUniversité Versailles, Saint-Quentin-en-YvelinesVersailles CedexFrance

Personalised recommendations