Skip to main content

Surface Location Error in Milling

  • Chapter
  • First Online:
Machining Dynamics
  • 2213 Accesses

Abstract

Chapter 5 studies the influence of forced vibrations on part geometric accuracy in milling. The associated errors are referred to as surface location errors, or SLE. After describing SLE, an analytical, frequency domain solution is first presented which includes a Fourier series force model and SLE variation with axial location along the tool axis. A time domain simulation is then detailed which models the cycloidal motion of the cutter teeth and predicts SLE.

No amount of experimentation can ever prove me right; a single experiment can prove me wrong.

—Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This also explains why a vibrating tool can leave a smooth surface. Because the tool vibration is synchronous with rotation, the tool is in the same position each time it creates the new surface.

  2. 2.

    In general, it is not necessary to use a large number of terms to represent the force. It is usually only necessary that the first few harmonics be characterized since higher-order harmonics often have little impact on the system behavior.

References

  1. Kline, W., DeVor, R., & Shareef, I. (1982). The prediction of surface accuracy in end milling. Journal of Engineering for Industry, 104, 272–278.

    Article  Google Scholar 

  2. Kline, W., DeVor, R., & Lindberg, J. (1982). The prediction of cutting forces in end milling with application to cornering cuts. International Journal of Machine Tool Design Research, 22, 7–22.

    Article  Google Scholar 

  3. Tlusty, J. (1985). Effect of end milling deflections on accuracy. In R. I. King (Ed.), Handbook of high speed machining technology (pp. 140–153). New York: Chapman and Hall.

    Google Scholar 

  4. Sutherland, J., & DeVor, R. (1986). An improved method for cutting force and surface error prediction in flexible end milling systems. Journal of Engineering for Industry, 108, 269–279.

    Article  Google Scholar 

  5. Montgomery, D., & Altintas, Y. (1991). Mechanism of cutting force and surface generation in dynamic milling. Journal of Engineering for Industry, 113(2), 160–168.

    Article  Google Scholar 

  6. Smith, S., & Tlusty, J. (1991). An overview of modeling and simulation of the milling process. Journal of Engineering for Industry, 113(2), 169–175.

    Article  Google Scholar 

  7. Altintas, Y., Montgomery, D., & Budak, E. (1992). Dynamic peripheral milling of flexible structures. Journal of Engineering for Industry, 114(2), 137–145.

    Google Scholar 

  8. Tarng, Y., Liao, C., & Li, H. (1994). A mechanistic model for prediction of the dynamics of cutting forces in helical end milling. International Journal of Modeling and Simulation, 14(2), 92–97.

    Article  Google Scholar 

  9. Schmitz, T., & Ziegert, J. (1999). Examination of surface location error due to phasing of cutter vibrations. Precision Engineering, 23(1), 51–62.

    Article  Google Scholar 

  10. Altintas, Y. (2000). Manufacturing automation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  11. Mann, B., Bayly, P., Davies, M., & Halley, J. (2004). Limit cycles, bifurcations, and accuracy of the milling process. Journal of Sound and Vibration, 277, 31–48.

    Article  Google Scholar 

  12. Schmitz, T., Couey, J., Marsh, E., Mauntler, N., & Hughes, D. (2007). Runout effects in milling: Surface finish, surface location error, and stability. International Journal of Machine Tools and Manufacture, 47, 841–851.

    Article  Google Scholar 

  13. Yun, W.-S., Ko, J., Cho, D.-W., & Ehmann, K. (2002). Development of a virtual machining system, Part 2: Prediction and analysis of a machined surface error. International Journal of Machine Tools and Manufacture, 42, 1607–1615.

    Article  Google Scholar 

  14. Tlusty, G. (2000). Manufacturing equipment and processes. Upper Saddle River, NJ: Prentice-Hall Section 9.5.5, Fig. 9.50.

    Google Scholar 

  15. Schmitz, T., Ziegert, J., Canning, J. S., & Zapata, R. (2007). Case study: A comparison of error sources in high-speed milling. Precision Engineering, 32, 126–133.

    Article  Google Scholar 

  16. Tlusty, J., Zaton, W., & Ismail, F. (1983). Stability lobes in milling. Annals of the CIRP, 32(1), 309–313.

    Article  Google Scholar 

  17. Altintas, Y., & Budak, E. (1995). Analytical prediction of stability lobes in milling. Annals of the CIRP, 44(1), 357–362.

    Article  Google Scholar 

  18. Schmitz, T., & Mann, B. (2006). Closed form solutions for surface location error in milling. International Journal of Machine Tools and Manufacture, 46, 1369–1377.

    Article  Google Scholar 

  19. Ikua, B. W., Tanaka, H., Obata, F., & Sakamoto, S. (2001). Prediction of cutting forces and machining error in ball end milling of curved surfaces—I. Theoretical analysis. Precision Engineering, 25(4), 266–273.

    Article  Google Scholar 

  20. Ranganath, S., Narayanan, K., & Sutherland, J. (1999). The role of flank face interference in improving the accuracy of dynamic force predictions in peripheral milling. Journal of Manufacturing Science and Engineering, 121, 593–599.

    Article  Google Scholar 

  21. Campomanes, M. L., & Altintas, Y. (2003). An improved time domain simulation for dynamic milling at small radial immersions. Journal of Manufacturing Science and Engineering, 125, 416–422.

    Article  Google Scholar 

  22. Chau, W.-M. (1992). Accuracy of milling operations based on dynamic models and simulation. M.S. Thesis, University of Florida.

    Google Scholar 

  23. American Society of Mechanical Engineers. (2003). ASME B46.1-2002, Surface Texture (Surface Roughness, Waviness, and Lay), New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Exercises

  1. 1.

    Determine the value of the mean y direction cutting force for the following cuts using Eq. 5.3. The aluminum alloy-four tooth cutter combination gives: kt = 790 N/mm2 and kn = 190 N/mm2, kte = 8 N/mm, and kne = 4 N/mm. Also, b = 5 mm and ft = 0.15 mm/tooth. Assume a rigid cutting tool and workpiece.

    1. (a)

      Up milling, 30% radial immersion

    2. (b)

      Down milling, 40% radial immersion

  2. 2.

    Plot the y direction force over one cutter revolution for: down milling, 50% radial immersion, Nt = 2, d = 19 mm, γ = 30 deg, b = 2 mm, ft = 0.2 mm/tooth, kt = 730 N/mm2, kn = 205 N/mm2, kte = kne = 0 N/mm, and Ω = 10,000 rpm. Use the Fourier series approach and show results for both five and 25 terms.

  3. 3.

    Calculate the surface location error for the following conditions: 25% radial immersion down milling, spindle speeds from 11,000 rpm to 13,000 rpm, Nt = 4, γ = 30 deg, d = 12.7 mm diameter, ft = 0.15 mm/tooth, b = 2 mm, kt = 700 N/mm2, kn = 210 N/mm2, kte = kne = 2 N/mm, and symmetric structural dynamics with a stiffness of 8 × 106 N/m, ζ = 0.02, and 800 Hz natural frequency. For the Fourier computations, use 15 terms, five axial steps, and a spindle speed resolution of 20 rpm. At a spindle speed of 12,140 rpm is the surface overcut or undercut?

  4. 4.

    Using time domain simulation, determine the surface location error at the free end of the cutter for the same conditions described in Exercise 3. Use a spindle speed equal to the best speed calculated from Eq. 4.29 for the N = 0 (rightmost) lobe. Carry out your simulation for 40 revolutions with 500 steps per tooth.

  5. 5.

    Plot the y direction force over one cutter revolution for: up milling, 50% radial immersion, Nt = 4, d = 12.7 mm, γ = 30 deg, b = 2 mm, ft = 0.1 mm/tooth, kt = 700 N/mm2, kn = 200 N/mm2, kte = kne = 0 N/mm, and Ω = 12,000 rpm. Use the Fourier series approach and show results for both five and 25 terms. Compare these results to the y direction force for straight teeth with all other parameters identical.

Appendix: Fourier Force Series Coefficients

The Fourier coefficients, an and bn, for the y direction force series:

$$ {F}_y\left(\phi \right)=\sum \limits_{j=1}^A\sum \limits_{i=1}^{N_{\mathrm{t}}}\left({a}_0+\sum \limits_{n=1}^{\infty}\left({a}_n\cos \left(n{\phi}_i\right)+{b}_n\sin \left(n{\phi}_i\right)\right)\right), $$

where \( {\phi}_i=\omega t+\frac{2\pi }{N_{\mathrm{t}}}\left(i-1\right)-\chi \left(j-1\right) \), are provided here [18]. The terms in Eqs. 5.18 through 5.23 were determined using Eqs. 5.5 and 5.6. The integration limits for down milling (ϕ1 to π) are shown. For up milling, the limits are modified to be zero to ϕ1.

$$ {a}_1=-\frac{bN_{\mathrm{t}}}{\pi }{\left[\begin{array}{l}{k}_{\mathrm{t}}c\left(-\frac{1}{4}\sin \phi +\frac{1}{12}\sin 3\phi \right)+{k}_{\mathrm{n}}c\left(-\frac{1}{4}\cos \phi -\frac{1}{12}\cos 3\phi \right)\\ {}+{k}_{\mathrm{t}\mathrm{e}}\left(\frac{1}{4}\cos 2\phi \right)+{k}_{\mathrm{n}\mathrm{e}}\left(\frac{1}{2}\phi +\frac{1}{4}\sin 2\phi \right)\end{array}\right]}_{\phi_1}^{\pi } $$
(5.18)
$$ {a}_2=-\frac{bN_{\mathrm{t}}}{\pi }{\left[\begin{array}{l}{k}_{\mathrm{t}}c\left(\frac{1}{4}\phi -\frac{1}{4}\sin 2\phi +\frac{1}{16}\sin 4\phi \right)+{k}_{\mathrm{n}}c\left(-\frac{1}{16}\cos 4\phi \right)\\ {}+{k}_{\mathrm{t}\mathrm{e}}\left(-\frac{1}{2}\cos \phi +\frac{1}{6}\cos 3\phi \right)+{k}_{\mathrm{n}\mathrm{e}}\left(\frac{1}{2}\sin \phi +\frac{1}{6}\sin 3\phi \right)\end{array}\right]}_{\phi_1}^{\pi } $$
(5.19)
$$ {a}_n=-\frac{bN_{\mathrm{t}}}{\pi }{\left[\begin{array}{l}{k}_{\mathrm{t}}c\left(-\frac{1}{2n}\sin n\phi +\frac{1}{4\left(n-2\right)}\sin \left(n-2\right)\phi +\frac{1}{4\left(n+2\right)}\sin \left(n+2\right)\phi \right)\\ {}+{k}_{\mathrm{n}}c\left(\frac{1}{4\left(n-2\right)}\cos \left(n-2\right)\phi -\frac{1}{4\left(n+2\right)}\cos \left(n+2\right)\phi \right)\\ {}+{k}_{\mathrm{t}\mathrm{e}}\left(-\frac{1}{2\left(n-1\right)}\cos \left(n-1\right)\phi +\frac{1}{2\left(n+1\right)}\cos \left(n+1\right)\phi \right)\\ {}+{k}_{\mathrm{n}\mathrm{e}}\left(\frac{1}{2\left(n-1\right)}\sin \left(n-1\right)\phi +\frac{1}{2\left(n+1\right)}\sin \left(n+1\right)\phi \right)\end{array}\right]}_{\phi_1}^{\pi },n=3,4,\dots $$
(5.20)
$$ {b}_1=-\frac{bN_{\mathrm{t}}}{\pi }{\left[\begin{array}{l}{k}_{\mathrm{t}}c\left(\frac{3}{4}\cos \phi -\frac{1}{12}\cos 3\phi \right)+{k}_{\mathrm{n}}c\left(\frac{1}{4}\sin \phi -\frac{1}{12}\sin 3\phi \right)\\ {}+{k}_{\mathrm{t}\mathrm{e}}\left(-\frac{1}{2}\phi +\frac{1}{4}\sin 2\phi \right)+{k}_{\mathrm{n}\mathrm{e}}\left(-\frac{1}{4}\cos 2\phi \right)\end{array}\right]}_{\phi_1}^{\pi } $$
(5.21)
$$ {b}_2=-\frac{bN_{\mathrm{t}}}{\pi }{\left[\begin{array}{l}{k}_{\mathrm{t}}c\left(\frac{1}{4}\cos 2\phi -\frac{1}{16}\cos 4\phi \right)+{k}_{\mathrm{n}}c\left(\frac{1}{4}\phi -\frac{1}{16}\sin 4\phi \right)\\ {}+{k}_{\mathrm{t}\mathrm{e}}\left(-\frac{1}{2}\sin \phi +\frac{1}{6}\sin 3\phi \right)+{k}_{\mathrm{n}\mathrm{e}}\left(-\frac{1}{2}\cos \phi -\frac{1}{6}\cos 3\phi \right)\end{array}\right]}_{\phi_1}^{\pi } $$
(5.22)
$$ {b}_n=-\frac{bN_{\mathrm{t}}}{\pi }{\left[\begin{array}{l}{k}_{\mathrm{t}}c\left(\frac{1}{2n}\cos n\phi -\frac{1}{4\left(n-2\right)}\cos \left(n-2\right)\phi -\frac{1}{4\left(n+2\right)}\cos \left(n+2\right)\phi \right)\\ {}+{k}_{\mathrm{n}}c\left(\frac{1}{4\left(n-2\right)}\sin \left(n-2\right)\phi -\frac{1}{4\left(n+2\right)}\sin \left(n+2\right)\phi \right)\\ {}+{k}_{\mathrm{t}\mathrm{e}}c\left(-\frac{1}{2\left(n-1\right)}\sin \left(n-1\right)\phi +\frac{1}{2\left(n+1\right)}\sin \left(n+1\right)\phi \right)\\ {}+{k}_{\mathrm{n}\mathrm{e}}c\left(-\frac{1}{2\left(n-1\right)}\cos \left(n-1\right)\phi -\frac{1}{2\left(n+1\right)}\cos \left(n+1\right)\phi \right)\end{array}\right]}_{\phi_1}^{\pi },n=3,4,\dots $$
(5.23)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitz, T.L., Smith, K.S. (2019). Surface Location Error in Milling. In: Machining Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-93707-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93707-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93706-9

  • Online ISBN: 978-3-319-93707-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics