Skip to main content

Abstract

In the previous chapter we saw how one can create and visualise a 3D model using DigTrace or similar proprietary software. Here we focus on the analytical techniques and tools that can be applied to such models to aid measurement, comparison and analysis. We start with a discussion of accuracy and precision before looking at basic measurement techniques and the inferences that can be made from them. This is followed by a discussion of kinematics from tracks and then by a review of more advanced analytical tools and approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott JR (1964) Footwear evidence. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Adams BJ, Herrmann NP (2009) Estimation of living stature from selected anthropometric (soft tissue) measurements: applications for forensic anthropology. J Forensic Sci 54:753–760

    Article  Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Italian J Zoo 71:5–16

    Article  Google Scholar 

  • Alexander RMCN (1984) Stride length and speed for adults, children, and fossil hominids. Am J Phys Anthropol 63:23–27

    Article  Google Scholar 

  • Alexander RMN (1976) Estimates of speeds of dinosaurs. Nature 261:129–130. https://doi.org/10.1038/261129a0

    Article  Google Scholar 

  • Alexander A, Bouridane A, Crooks D (1999) Automatic classification and recognition of shoeprints. In: Proceedings on 7th International IEEE conference on image processing and its applications, vol 2, pp 638–641

    Google Scholar 

  • Algarni G, Amiane M (2008) A novel technique for automatic shoeprint image retrieval. Forensic Sci Int 181(1–3):10–14

    Article  Google Scholar 

  • Alizadeh S, Kose C (2017) Automatic retrieval of shoeprint images using blocked sparse representation. For Sci Int 277:103–114

    Google Scholar 

  • Altamura F, Bennett MR, D’Août K, Gaudzinski-Windheuser S, Melis RT, Reynolds SC, Mussi M (2018) Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: everyday life of a mixed-age hominin group 700,000 years ago. Sci Reports 8:2815. https://doi.org/10.1038/s41598-018-21158-7

    Article  Google Scholar 

  • Anderson M, Blais M, Green WT (1956) Growth of the normal foot during childhood and adolescence: Length of the foot and interrelations of foot, stature, and lower extremity as seen in serial records of children between 1–18 years of age. Am J Phys Anthropol 14:287–308

    Article  Google Scholar 

  • Ashizawa K, Kumakura C, Kusumoto A et al (1997) Relative foot size and shape to general body size in Javanese, Filipinas and Japanese with special reference to habitual footwear types. Annal Hum Biol 24(2):117–129

    Article  Google Scholar 

  • Ashley W (1996) What shoe was that? The use of computerised image database to assist in identification. For Sci Int 82:7–20

    Google Scholar 

  • Ashton N, Lewis SG, De Groote I, Duffy SM, Bates M, Bates R, Hoare P, Lewis M, Parfitt SA, Peglar S, Williams C (2014) Hominin footprints from early Pleistocene deposits at Happisburgh, UK. PloS ONE 9(2):e88329. https://doi.org/10.1371/journal.pone.0088329

    Article  Google Scholar 

  • Atamturk D, Duyar I (2008) Age-related factors in the relationship between foot measurements and living stature and body weight. J Forensic Sci 53(6):1296–1300

    Google Scholar 

  • Avanzini M, Lockley M (2002) Middle Triassic archosaur population structure: interpretation based on Isochirotherium delicatum fossil footprints (Southern Alps, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 185:391–402

    Article  Google Scholar 

  • Barker SL, Scheuer JL (1998) Predictive value of human footprints in a forensic context. Medicine Sci Law 38:341–346

    Article  Google Scholar 

  • Basu N, Bandyopadhyay SK (2017) Crime scene reconstruction—Sex prediction from blood stained foot sole impressions. For Sci Int 278:156–172

    Google Scholar 

  • Bates KT, Savage R, Pataky TC, Morse SA, Webster E, Falkingham PL, Ren L, Qian Z, Collins D, Bennett MR, McClymont J (2013) Does footprint depth correlate with foot motion and pressure? J R Soc Interface 10:20130009. https://doi.org/10.1098/rsif.2013.0009

    Article  Google Scholar 

  • Bennett MR, Morse SA (2014) Human footprints: fossilised locomotion? Springer, Dorchedt

    Google Scholar 

  • Bennett MR, Harris JWK, Richmond BG, Braun DR, Mbua E, Kiura P, Olago D, Kibunjia M, Omuombo C, Behrensmeyer AK, Huddart D, Gonzalez S (2009) Early hominin foot morphology based on 1.5 million year old footprints from lleret, Kenya. Science 323:1197–1201

    Article  Google Scholar 

  • Berge C, Penin X, Pellé É (2006) New interpretation of Laetoli footprints using an experimental approach and procrustes analysis: preliminary results. CR Palevol 5:561–569

    Article  Google Scholar 

  • Bibi F, Kraatz B, Craig N, Beech M, Schuster M, Hill A (2012) Early evidence for complex social structure in Proboscidea from a late Miocene trackway site in the United Arab Emirates. Biol Lett 8:670–673

    Article  Google Scholar 

  • Birch I, Vernon W, Walker J, Young M (2015) Terminology and forensic gait analysis. Sci Justice 55:279–284

    Article  Google Scholar 

  • Blanc Y, Balmer C, Landis T, et al (1999) Temporal parameters and patterns of the foot roll over during walking: normative data for healthy adults. Gait Posture: 97–108

    Google Scholar 

  • Bodziak WJ (2017) Forensic footwear evidence (Practical Aspects of Criminal and Forensic Investigations). CRC Press, Taylor and Francis Group

    Google Scholar 

  • Bosch K, Gerß J, Rosenbaum D (2010) Development of healthy children’s feet-Nine-year results of a longitudinal investigation of plantar loading patterns. Gait and Posture 32:564–571

    Article  Google Scholar 

  • Bouridane A, Alexander A, Nibouche M, Crookes D (2000) Application of fractals to the detection and classification of shoeprints. In: International conference on image processing, Vancouver, BC, pp 474–477

    Google Scholar 

  • Burrow JG (2016) The use of the Podotrack in forensic podiatry for collection and analysis of bare footprints using the Reel method of measurement. Sci Justice 56:216–222

    Article  Google Scholar 

  • Castanera D, Pascual C, Razzolini NL, Vila B, Barco JL, Canudo JI (2013) Discriminating between medium-sized tridactyl trackmakers: tracking ornithopod tracks in the base of the Cretaceous (Berriasian, Spain). PLoS ONE 8:e81830

    Article  Google Scholar 

  • Cervelli F, Dardi F, Carrato S (2009a) A texture based shoe retrieval system for shoe marks of real crime scenes. In: International conference on image analysis and processing, Italy, pp 384–393

    Google Scholar 

  • Cervelli F, Dardi F, Carrato S (2009b) An automatic footwear retrieval system for shoe marks from real crime scenes. In: International symposium on image and signal processing and analysis, Salzburg, pp 668–672

    Google Scholar 

  • Cervelli F, Dardi F, Carrato S (2010) A translational and rotational invariant descriptor for automatic footwear retrieval of real cases shoe marks. In European signal processing conference, Aalborg, pp 1665–1669

    Google Scholar 

  • Charteris J, Wall JC, Nottrodt JW (1981) Functional reconstruction of gait from the Pliocene hominid footprints at Laetoli, northern Tanzania. Nature 290:496–498

    Article  Google Scholar 

  • Chazal PD, Flynn J, Reilly RB (2005) Automated processing of shoeprint images based on the Fourier transform for use in forensic science. IEEE Trans Pattern Anal Mach Intell 27: 341–350. https://doi.org/10.1109/tpami.2005.48

  • Claude J (2008) Morphometrics with R. Springer, New York

    Google Scholar 

  • Clough S (2000) Life term for bandy-legged jewel robber, 29 Jul 2000 Daily Telegraph http://www.telegraph.co.uk/news/uknews/1350769/Life-term-for-bandy-legged-jewel-robber.html

  • Cole SA (2009) Forensics without uniqueness, conclusions without individualization: the new epistemology of forensic identification. Law, Probability Risk 8(3):233–255

    Article  Google Scholar 

  • Coyle IR, Field D, Wenderoth P (2009) Pattern recognition and forensic identification: the presumption of scientific accuracy and other falsehoods. Criminal law J 33:214–226

    Google Scholar 

  • Crompton RH, Pataky TC, Savage R et al (2011) Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old Laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation. J R Soc Interface 9:707–719

    Article  Google Scholar 

  • Crookes D, Bouridane A, Su H, Gueham M (2007) Following the footsteps of others: techniques for automatic shoeprint classification. In: Second NASA/ESA conference on, Edinburgh, pp 67–74

    Google Scholar 

  • Cumming DH, Cumming GS (2003) Ungulate community structure and ecological processes: body size, hoof area and trampling in African savannas. Oecologia 134:560–568

    Article  Google Scholar 

  • D’AoÛt K, Pataky TC, De Clercq D, Aerts P (2009) The effects of habitual footwear use: foot shape and function in native barefoot walkers. Footwear Sci 1:81–94

    Article  Google Scholar 

  • D’Arcy WT (1917) On growth and form. Cambridge

    Google Scholar 

  • Dardi F, Cervelli F, Carrato S (2009) A texture based shoe retrieval system for shoe marks of real crime scenes. In: International conference on image analysis and processing. Springer, Berlin, Heidelberg, pp. 384–393

    Google Scholar 

  • Dattalo P (2008) Determining sample size: Balancing power, precision, and practicality. Oxford University Press

    Google Scholar 

  • DiMaggio JA, Vernon W (2011) Forensic podiatry principles and human identification. In Forensic Podiatry. Humana Press, Totowa, NJ, pp. 13–24

    Google Scholar 

  • Edmond G, Cunliffe E (2016) Cinderella story: the social production of a forensic science. J Crim L Criminol 106:219

    Google Scholar 

  • Evett IW, Jackson G, Jones PJ et al (2000) More on the hierarchy of propositions: exploring the distinction between explanations and propositions. Sci Justice 40:3–10

    Article  Google Scholar 

  • Falkingham PL (2016) Applying objective methods to subjective track outlines. Dinosaur Tracks-The Next Steps. Life of the Past. Indiana University Press, Bloomington, pp 73–80

    Google Scholar 

  • Farrugia KJ, Riches P, Bandey H, Savage K, NicDaéid N (2012) Controlling the variable of pressure in the production of test footwear impressions. Sci Justice 52:168–176

    Article  Google Scholar 

  • Finestone AS, Petrov K, Agar G, Honig A, Tamir E, Milgrom C (2012) Pattern of outsole shoe heel wear in infantry recruits. J Foot Ankle Res 5(1):27

    Article  Google Scholar 

  • Friess M (2010) Calvarial shape variation among Middle Pleistocene hominins: An application of surface scanning in palaeoanthropology. CR Palevol 9(6):435–443

    Article  Google Scholar 

  • Friston KJ, Ashburner JT, Kiebel SJ, et al (2007) Statistical parametric mapping: the analysis of functional brain images. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Fujiwara Y, Irie G, Kuroyama S, Onizuka M (2014) Scaling manifold ranking based image retrieval. Proceedings of the VLDB Endowment 8:341–352

    Article  Google Scholar 

  • Girod (1996) Computer classification of the shoeprint of burglar soles. For Sci Int 82:59–65

    Google Scholar 

  • Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM et al (2008) Geometric morphometric analysis of the crown morphology of the lower first premolar of hominins, with special attention to Pleistocene Homo. J Hum Evol 55:627–638

    Article  Google Scholar 

  • González Riga BJ (2011) Speeds and stance of titanosaur sauropods: analysis of Titanopodus tracks from the Late Cretaceous of Mendoza, Argentina. An Acad Bras Ciênc 83:279–290

    Article  Google Scholar 

  • Gower JC (1975) Generalized procrustes analysis. Psychometrika, 40:33–51

    Google Scholar 

  • Grivas TB, Mihas C, Arapaki A et al (2008) Correlation of foot length with height and weight in school age children. J Forens Legal Med 15:89–95

    Article  Google Scholar 

  • Gueham M, Bouridane A, Crookes D (2007) Automatic recognition of partial shoeprints based on phase-only correlation. In: IEEE International Conference on Image Processing (ICIP), San Antonio, TX, pp 441–444

    Google Scholar 

  • Gueham M, Bouridane A, Crookes D (2008) Automatic classification of partial shoeprints using advanced correlation filters for use in forensic science. In: International conference on pattern recognition, Tampa, FL, pp 1–4

    Google Scholar 

  • Gunn N (1991) Old and new methods of evaluating footprint impressions by a forensic podiatrist. Br J Poediatry Med Surg 3:8–11

    Google Scholar 

  • Hammer Ø, Harper D (2006) Paleontological data analysis. Blackwells, Oxford

    Google Scholar 

  • Hatala KG, Wunderlich RE, Dingwall HL, Richmond BG (2016) Interpreting locomotor biomechanics from the morphology of human footprints. J Hum Evol 90:38–48

    Article  Google Scholar 

  • Hill LM (1958) Changes in the proportions of the female foot during growth. Am J Phys Anthropol 349–366

    Google Scholar 

  • Hornung JJ, Böhme A, Schlüter N, Reich M (2016) Diversity, ontogeny, or both? A morphometric approach to iguanodontian ornithopod (Dinosauria: Ornithischia) track assemblages from the Berriasian (Lower Cretaceous) of North Western Germany. Dinosaur tracks–next steps, pp 202–225

    Google Scholar 

  • Hrdlička A (1935) The Pueblos. Am J Phys Anthropol 20:235–460

    Article  Google Scholar 

  • Huynh C, de Chazal P, McErlean D, Reilly RB, Hannigan TJ Fleury LM (2003) Automatic classification of shoeprints for use in forensic science based on the Fourier transform. In: 2003 International Conference on Proceeding of Image Processing, 2003. ICIP 2003, vol 3, IEEE, pp III-569

    Google Scholar 

  • Jasuja OP, Singh J, Jain M (1991) Estimation of stature from foot and shoe measurements by multiplication factors: a revised attempt. Forensic Sci Int 52:203–215

    Article  Google Scholar 

  • Jing MQ, Ho WJ Chen LH (2009) A novel method for shoeprints recognition and classification. In: 2009 International conference on machine learning and cybernetics, vol 5. IEEE, pp 2846–2851

    Google Scholar 

  • Kanchan T, Menezes RG, Moudgil R et al (2008) Stature estimation from foot dimensions. Forensic Sci Int 179:241-e1

    Google Scholar 

  • Kanchan T, Menezes RG, Moudgil R et al (2010) Stature estimation from foot length using universal regression formula in a North Indian population. J Forensic Sci 55:163–166

    Article  Google Scholar 

  • Kerstholt JH, Paashuis R, Sjerps M (2007) Shoe print examinations: effects of expectation, complexity and experience. Forensic Sci Int 165:30–34

    Article  Google Scholar 

  • Koehler JJ (2011) If the shoe fits they might acquit: the value of forensic science testimony. J Empirical Legal Studies 8:21–48

    Article  Google Scholar 

  • Kong B, Ramanan D, Fowlkes C (2017) Cross-domain forensic shoeprint matching. In: British Machine Vision Conference (BMVC). www.ics.uci.edu/~fowlkes/papers/KongSRF_BMVC_2017.pdf

  • Kortylewski A, Albrecht T, Vetter T (2014) Unsupervised footwear impression analysis and retrieval from crime scene data. In: ACCV 2014 workshops, Singapore, Singapore, pp 644–658

    Google Scholar 

  • Krishan K (2008a) Determination of stature from foot and its segments in a north Indian population. Am J Forensic Med Pathol 29:297–303

    Article  Google Scholar 

  • Krishan K (2008b) Estimation of stature from foot prints and Foot outline dimension in Gujjar of north India. Forensic Sci Int 175:93–101

    Article  Google Scholar 

  • Krishan K (2008c) Establishing correlation of footprints with body weight-Forensic aspects. Forensic Sci Int 179:63–69

    Article  Google Scholar 

  • Lallensack JN, van Heteren AH, Wings O (2016) Geometric morphometric analysis of intratrackway variability: a case study on theropod and ornithopod dinosaur trackways from Münchehagen (Lower Cretaceous, Germany). PeerJ 4:e2059

    Article  Google Scholar 

  • Larsen H, Budka M, Ghosi Z Bennett MR (2018) Accuracy and precision in footwear measurements. J For Sci Int (in press)

    Google Scholar 

  • Lee PC, Moss CJ (1995) Statural growth in known-age African elephants (Loxodonta africana). J Zoo 236:29–41

    Article  Google Scholar 

  • Lenth RV (2001) Some practical guidelines for effective sample size determination. Am Stat 55(3):187–193

    Article  Google Scholar 

  • Levine D, Richards J, Whittle MW (2012) Whittle’s gait analysis, 5th edn. Elsevier Health Sciences

    Google Scholar 

  • Li ZW, Wei C, Li Y, Sun T (2011) Research of shoeprint image stream retrieval algorithm with scale-invariance feature transform. In: International conference on multimedia technology, Hangzhou, pp 5488–5491

    Google Scholar 

  • Lockley M, Roberts G, Kim JY (2008) In the footprints of our ancestors: an overview of the hominid track record. Ichnos 15:106–125

    Article  Google Scholar 

  • Luostarinen T, Lehmussola A (2014) Measuring the accuracy of automatic shoeprint recognition methods. J For Sci 59:1627–1634

    Google Scholar 

  • Macdonell WR (1902) On criminal anthropometry and the identification of criminals. Biometrika 1:177–227

    Article  Google Scholar 

  • Maintz JA, Viergever MA (1998) A survey of medical image registration. Med Image Analysis 2:1–36

    Article  Google Scholar 

  • Malina RM, Hamill PVV, Lemeshow S (1973) Selected body: measurements of children 6–11 Years. DHEW Publication No. (HSM) 73-1605

    Google Scholar 

  • Matthews N, Noble T, Breithaupt BH, Falkingham PL, Marty D, Richter A (2016) Close-Range photogrammetry for 3D ichnology: the basics of photogrammetric ichnology. In Dinosaur Tracks: The Next Steps. Bloomington: Indiana University Press, pp. 28–55

    Google Scholar 

  • McAllister PJ (2011) The Evolution of the inadequate modern male. Australian Science 19–21

    Google Scholar 

  • McCrea RT, Tanke DH, Buckley LG, Lockley MG, Farlow JO, Xing L, Matthews NA, Helm CW, Pemberton SG, Breithaupt BH (2015) Vertebrate ichnopathology: pathologies inferred from dinosaur tracks and trackways from the Mesozoic. Ichnos 22:235–260

    Article  Google Scholar 

  • McElhone RL, Meakin GE, French JC, Alexander T, Morgan RM (2016) Simulating forensic casework scenarios in experimental studies: the generation of footwear marks in blood. For Sci Int 264:34–40

    Google Scholar 

  • McNeil P, Hills LV, Kooyman B, Tolman SM (2005) Mammoth tracks indicate a declining Late Pleistocene population in southwestern Alberta, Canada. Quat Sci Rev 24:1253–1259

    Article  Google Scholar 

  • Mikkonen S, Suominen V, Heinonen P (1996) Use of footwear impressions in crime scene investigations assisted by computerized footwear collection system. For Sci Int 82:67–79

    Google Scholar 

  • Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27:1615–1630

    Article  Google Scholar 

  • Miller KV, Marchinton RL, Nettles VF (1986) The growth rate of hooves of white-tailed deer. J Wildl Dis 22:129–131

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Morse SA, Bennett MR, Liutkus‐Pierce C, Thackeray F, McClymont J, Savage R, Crompton RH (2013) Holocene footprints in Namibia: the influence of substrate on footprint variability. Am J Phy Anrthropol 151: 265–279

    Google Scholar 

  • Muller S, Carlsohn A, Muller J et al (2012) Static and dynamic foot characteristics in children aged 1–13 years: a cross-sectional study. Gait Posture 35:389–394

    Article  Google Scholar 

  • Musiba CM, Tuttle RH, Hallgrímsson B (1997) Swift and sure-footed on the Savanna: a study of Hadzabe gaits and feet in Northern Tanzania. Am J Hum Biol 9:303–321

    Article  Google Scholar 

  • Nataraja Moorthy T, Ling AY, Sarippudin SA et al (2013a) Estimation of stature from footprint and foot outline measurements in Malaysian Chinese. Aust J Forensic Sci 1-24 https://doi.org/10.1080/00450618.2013.825813

  • Nataraja Moorthy T, MohdKhalil NAFBT, Khan HMA (2013b) Stature estimation based on footprint measurements of Malays in peninsular Malaysia by regression analysis. Int J Biomed Advance Res 4(10):683–689

    Article  Google Scholar 

  • Nibouche O, Bouridane A, Crookes D, Gueham M et al (2009) Rotation invariant matching of partial shoeprints. In: Machine vision and image processing conference, Dublin, pp 94–98

    Google Scholar 

  • Olshan AF, Siegel AF, Swindler DR (1982) Robust and least-squares orthogonal mapping: methods for the study of cephalofacial form and growth. Am J Phy Antrhopl 59:131–137

    Article  Google Scholar 

  • Pales L (1976) Les empreintes de pieds Humains dans les cavernes. Archives de l’ Institut de Pal´eontologie Humaine 36: 1–166

    Google Scholar 

  • Parés-Casanova PM, Oosterlinck M (2012a) Hoof size and symmetry in young catalan pyrenean horses reared under semi-extensive conditions. J Equine Vet Sci 32:231–234

    Article  Google Scholar 

  • Parés-Casanova PM, Oosterlinck M (2012b) Relation between hoof area and body mass in ungulates reared under semi-extensive conditions in the spanish Pyrenees. J Anim Sci Adv 2:374–379

    Google Scholar 

  • Pataky TC (2008) Assessing the significance of pedobarographic signals using random field theory J Biomechanics 41:2465–2473

    Google Scholar 

  • Pataky TC, Caravaggi P, Savage R et al (2008a) New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). J Biomech 41(9):1987–1994

    Article  Google Scholar 

  • Pataky TC, Goulermas JH, Crompton RH (2008b) A comparison of seven methods of within-subjects rigid-body pedobarographic image registration. J Biomech 41:3085–3089

    Article  Google Scholar 

  • Pataky TC, Goulermas JY (2008) Pedobarographic statistical parametric mapping (pSPM): A pixel-level approach to foot pressure image analysis. J Biomech 41:2136–2143

    Article  Google Scholar 

  • Pataky TC, Mu T, Bosch K et al (2012) Gait recognition: highly unique dynamic plantar pressure patterns among 104 individuals. J R Soc Interface 9:790–800

    Article  Google Scholar 

  • Patil PM, Kulkarni JV (2009) Rotation and intensity invariant shoeprint matching using Gabor transform with application to forensic science. Pattern Recogn 42(7):1308–1317

    Article  Google Scholar 

  • Pavlou M, Allinson NM (2006a) Automatic extraction and classification of footwear patterns. In: 7th international conference, Burgos, Spain, pp 721–728

    Google Scholar 

  • Pavlou M, Allinson NM (2006b) Automatic extraction and classification of footwear patterns. In: International conference on intelligent data engineering and automated learning. Springer, Berlin, Heidelberg, pp 721–728

    Google Scholar 

  • Pavlou M, Allinson NM (2009) Automated encoding of footwear patterns for fast indexing. Image Vis Comput 27(4):402–409. https://doi.org/10.1016/j.imavis.2008.06.003

    Article  Google Scholar 

  • Pawar RM, Pawar MN (2012) Foot length—A functional parameter for assessment of height. The Foot 22(1):31–34

    Article  Google Scholar 

  • Petraco NDK, Chan H, De Forest PR, Diaczuk P, Gambino C, Hamby J, et al (2012) Application of machine learning to toolmarks: statistically based methods for impression pattern comparisons. Washington, DC: US Department of Justice Report No.: 239048, 2009‐DN‐BX‐K041

    Google Scholar 

  • Philips M (1995) A shoeprint image coding and retrieval system. In: European Convention on Security and Detection, IEE 267–271

    Google Scholar 

  • Polly PD (2008) Developmental dynamics and G-Matrices: can morphometric spaces be used to model phenotypic evolution? Evol Biol 35:83–96

    Article  Google Scholar 

  • Proc. International Conference on Image Analysis and Processing 5716 (2009) 384–393

    Google Scholar 

  • Rathinavel S, Arumugam S (2011) Full shoe print recognition based on pass band DCT and partial shoe print identification using overlapped block method for degraded images. Int J Comp Appl 26:16–21

    Google Scholar 

  • Razzolini NL, Vila B, Díaz-Martínez I, Manning PL, Galobart À (2016) Pes shape variation in an ornithopod dinosaur trackway (Lower Cretaceous, NW Spain): new evidence of an antalgic gait in the fossil track record. Cretaceous Res 58:125–134

    Article  Google Scholar 

  • Reel S, Rouse S, Vernon W, et al (2012) Estimation of stature from static and dynamic footprints. Forensic Sci Int 219:283-e1

    Google Scholar 

  • Reel S, Rouse S, Vernon W, Doherty P (2010) Reliability of a two-dimensional footprint measurement approach. Sci Justice 50(3):113–118

    Article  Google Scholar 

  • Richetelli N, Lee MC, Lasky CA, Gump ME, Speir JA (2017) Classification of footwear outsole patterns using fourier transform and local interest points. For Sci Int 275:102–109

    Google Scholar 

  • Robbins LM (1985). Footprints: collection, analysis, and interpretation

    Google Scholar 

  • Robbins LM (1986) Estimating height and weight from size of footprints. J Forensic Sci 31(1):143–152

    Article  Google Scholar 

  • Roberts G, Gonzalez S, Huddart D (1996) Intertidal Holocene footprints and their archaeological significance. Antiquity 70:647–651

    Article  Google Scholar 

  • Roberts DL, Bateman MD, Murray-Wallace CV, Carr AS, Holmes PJ (2008) Last Interglacial fossil elephant trackways dated by OSL/AAR in coastal aeolianites, Still Bay, South Africa. Palaeogeogr Palaeoclimat Palaeoecol 257:261–279

    Article  Google Scholar 

  • Roche AF (1986) Bone growth and maturation. In: Postnatal Growth Neurobiology. Springer, Boston, MA, pp 25–60

    Google Scholar 

  • Roche AF, Davila GH (1972) Late adolescent growth in stature. Pediatrics 50:874–880

    Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59

    Google Scholar 

  • Rosenbaum D, Hautmann S, Gold M et al (1994) Effects of walking speed on plantar pressure patterns and hindfoot angular motion. Gait Posture 2(3):191–197

    Article  Google Scholar 

  • Rosenbaum D, Becker HP (1997) Plantar pressure distribution measurements. Technical background and clinical applications. Foot Ankle Surg 3:1–14

    Article  Google Scholar 

  • Ruiz J, Torices A (2013) Humans running at stadiums and beaches and the accuracy of speed estimations from fossil trackways. Ichnos 20(1):31–35

    Article  Google Scholar 

  • Saks MJ, Faigman DL (2008) Failed forensics: how forensic science lost its way and how it might yet find it. Ann Rev Law Social Sci 4:149–171. https://doi.org/10.1146/annurev.lawsocsci.4.110707.172303

    Article  Google Scholar 

  • Sawyer NE, Monckton CU (1995) SHOE-FIT: a computerized shoeprint database. In: Proceeding of the European Convention on Security and Detection, pp 86–89

    Google Scholar 

  • Schmincke HU, Rausch J, Kutterolf S et al (2010) Walking through volcanic mud: the 2,100 year-old Acahualinca footprints (Nicaragua) II: the Acahualinca people, environmental conditions and motivation. Int J Earth Sci 99(1):279–292

    Article  Google Scholar 

  • Sellers WI, Manning PL (2007) Estimating dinosaur maximum running speeds using evolutionary robotics. Proc Roy Soc London B: Biol Sc 274:2711–2716

    Article  Google Scholar 

  • Sen J, Kanchan T, Ghosh S (2011) Sex estimation from foot dimensions in an indigenous Indian population. J Forensic Sci 56:S148–S153

    Article  Google Scholar 

  • Sheets HD, Gross S, Langenbug G et al (2013) Shape measurement tools in footwear analysis: a statistical investigation of accidental characteristics over time. Forensic Sci Int 232:84–91

    Article  Google Scholar 

  • Shrader AM, Ferreira SM, McElveen ME, Lee PC, Moss CJ, Van Aarde RJ (2006) Growth and age determination of African savanna elephants. J Zoo 270:40–48

    Google Scholar 

  • Siegel AF, Benson RH (1982) A robust comparison of biological shapes. Biometrics:341–350

    Google Scholar 

  • Singh TS, Phookan MN (1993) Stature and footsize in four Thai communities of Assam, India. Anthropol Anz: Bericht uber die biologisch-anthropologische Literatur 51:349–355

    Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Article  Google Scholar 

  • Sneath PH (1967) Trend-surface analysis of transformation grids. J Zoo 151:65–122

    Article  Google Scholar 

  • Snyder RG, Schneider LW, Owings CL, Reynolds HM, Colomb DH, Schork MA (1977) Anthropometry of infants, children, and youths to age 18 for product safety design. (Report UM-HSRI-77-17. University of Michigan Transportation Research Institute, 1977)

    Google Scholar 

  • Speir JA, Richetelli N, Fagert M, Hite M, Bodziak WJ (2016) Quantifying randomly acquired characteristics on outsoles in terms of shape and position. For Sci Int 266:399–411

    Google Scholar 

  • Srihari SN, Tang Y (2014) Computational methods for the analysis of footwear impression evidence. In: Computational intelligence in digital forensics: forensic investigation and applications. Springer, Cham, pp 333–383

    Google Scholar 

  • Stachurska A, Kolstrung R, Pięta M, Silmanowicz P (2011) Hoof size as related to body size in the horse (Equus caballus). Animal Sci Pap Rep 29:213–222

    Google Scholar 

  • Stavlas P, Grivas TB, Michas C et al (2005) The evolution of foot morphology in children between 6 and 17 years of age: a cross-sectional study based on footprints in a Mediterranean population. J Foot Ankle Surg 44:424–428

    Article  Google Scholar 

  • Stone RS (2006) Footwear examinations: mathematical probabilities of theoretical individual characteristics. J Forensic Ident 56:577–599

    Google Scholar 

  • Su H, Crookes D, Bouridane A (2007) Shoeprint image retrieval by topological and pattern spectra. Proc Int Conf Machine Vision Image Processing 2006:15–22

    Google Scholar 

  • Sun W, Taniar D, Torabi T (2010) Image mining: a case for clustering shoe prints. Web Engineering Advancements and Trends: Building New Dimensions of Information Technology: Building New Dimensions of Information Technology, p 83

    Google Scholar 

  • Tang Y, Srihari SN, Kasiviswanathan H (2010) Similarity and clustering of footwear prints. 2010 I.E. international conference on Granular Computing (GrC), San Jose, CA, pp 459–464

    Google Scholar 

  • Tang Y, Srihari SN, Kasiviswanathan H, Corso JJ (2011) Footwear print retrieval system for real crime scene marks. In: International workshop on computational forensics, Tokyo, Japan, pp 88–100

    Google Scholar 

  • Tang Y, Kasiviswanathan H, Srihari SN (2012) An efficient clustering-based retrieval framework for real crime scene footwear marks. Internat J Granular Comp Rough Sets Intelligent Systems 2:327–360

    Article  Google Scholar 

  • Thulborn RA (1990) Dinosaur tracks. Chapman Hall, London

    Book  Google Scholar 

  • Toppinard P (1877) L’Anthropologie. Reinwald, Paris

    Google Scholar 

  • Vallois H (1931) Les Impreintes de Pieds Humains des Grottes Pre-historiques du Midi de la France. Palaeobiologica 4:79–98

    Google Scholar 

  • Wang XN, Sun HH, Yu Q, Zhang C (2015) Automatic shoeprint retrieval algorithm for real crime scenes. In: ACCV, Singapore, pp 399–413

    Google Scholar 

  • Wang H, Fan J, Li Y (2016) Research of shoeprint image matching based on SIFT algorithm. J Comp Methods Sci Eng 16:349–359

    Google Scholar 

  • Wang X, Zhang C, Wu Y, Shu Y (2017) A manifold ranking based method using hybrid features for crime scene shoeprint retrieval. Multimed Tools Appl 76:21629–21649

    Article  Google Scholar 

  • Webb S (2007) Further research of the Willandra Lakes fossil footprint site, southeastern Australia. J Hum Evol 52:711–715

    Article  Google Scholar 

  • Webb S, Cupper ML, Robins R (2006) Pleistocene human footprints from the Willandra Lakes, southeastern Australia. J Hum Evol 50:405–413

    Article  Google Scholar 

  • Wei CH, Hsin C, Gwo CY (2014) Alignment of core point for shoeprint analysis and retrieval. In: Information Science, International Conference on Electronics and Electrical Engineering (ISEEE), Sapporo, pp 1069–1072

    Google Scholar 

  • Western D, Moss C, Georgiadis N (1983) Age estimation and population age structure of elephants from footprint dimensions. J Wildlife Man 47:1192–1197

    Article  Google Scholar 

  • Wilkinson MJ, Menz HB, Raspovic A (1995) The measurement of gait parameters from footprints. The Foot 5:84–90

    Article  Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press

    Google Scholar 

  • Zhang L, Allinson N (2005) Automatic shoeprint retrieval system for use in forensic investigations. In: UK Workshop on computational intelligence

    Google Scholar 

  • Zhang Y, Fu H, Dellandréa E, Chen L (2017) Adapting convolutional neural networks on the shoeprint retrieval for forensic use. In: Chinese conference on biometric recognition. Springer, Cham, pp 520–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Bennett .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bennett, M.R., Budka, M. (2019). Data Analysis and Techniques. In: Digital Technology for Forensic Footwear Analysis and Vertebrate Ichnology. Springer, Cham. https://doi.org/10.1007/978-3-319-93689-5_4

Download citation

Publish with us

Policies and ethics