Skip to main content

Bioremediation of Contaminated Paddy Soil

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 53))

Abstract

Rice is one of the most important cash crops in the world and is the sole source of food in many countries, such as China, Vietnam, and Bangladesh. With the rising global population, rice production has increased to a certain level to meet the nutritional demand, but there are still many challenges regarding its production and preservation. Paddy fields, which are found everywhere in the world, including in uplands, wetlands, rainfed pastures, or areas with deep water, provide an excellent environment for the natural production of rice.

The use of paddy fields is the major and most productive method for the production of rice. But problems related to paddy soil are enormous and are getting worse with the massive use of insecticides, pesticides, and herbicides. The accumulation of heavy metals in plants adversely affects human health. Remediation of these health hazardous compounds from paddy fields has always been a big challenge for producers, and many chemical methods have been adopted to detoxify and neutralize such hazardous compounds, but these methods have other side effects on the soil or the crop, or both. Bioremediation is a green technology that is used to remove heavy metals and other non-degradable substances from contaminated paddy soil, and it has significant effects in combating this disastrous problem. Designing and biosynthesis of potential microorganisms have always been topics of interest for scientists.

In this chapter, we have described many old and modern potential methods of bioremediation to enlighten the importance the importance and significance of this phenomenon in controlling contaminated paddy soil and eliminating contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–251

    Article  CAS  Google Scholar 

  • Adhikari T, Singh MV (2008) Remediation of cadmium pollution in soils by different amendments: a column study. Soil Sci Plant Anal 39:386–396

    Article  CAS  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial enviroment. Springer, New york

    Book  Google Scholar 

  • Anastasi A, Spina F, Prigione V et al (2010) Scale-up of bioprocess for textile wastewater treatment using bjerkandera adusta. Bioresour Technol 101:3067–3075. https://doi.org/10.1016/j.bioretech.2009.12.06

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and water logging. Physiol Plant 25(2):192–197

    Article  Google Scholar 

  • Bogan BW, Lamar RT (1999) Surfactant enhancement of white-rot fungal PAH soil remediation. Bioremediation technologies for polycyclic aromatic hydrocarbon compounds. Battelle Press, Columbus, OH

    Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24(5):691–710

    Article  CAS  Google Scholar 

  • Brus D, Li ZB, Temminghoffd EJM, Song J, Koopmans GF, Luo YM, Japenga J (2009) Predictions of spatially averaged cadmium contents in rice grains in the Fuyang Valley, P.R. S-1 China. J Environ Qual 38:1126–1136

    Article  CAS  Google Scholar 

  • Christie P, Beattie JAM (1989) Grassland soil microbial biomass and accumulation of potentially toxic metals from long term slurry application. J Appl Ecol 26:597–612

    Article  CAS  Google Scholar 

  • Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32(4):255–261

    Article  CAS  Google Scholar 

  • Reay D, GHG (2018). International conference on agricultural GHG emissions and food security – connecting research to policy and practice. http://www.agrighg-2018.org

  • Evans B, Dudley C, Klasson K (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl Biochem Biotechnol 57:885–894

    Article  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    Article  CAS  Google Scholar 

  • Hang X, Wang H, Zhou J, Ma C, Du C, Chen X (2009) Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ Pollut 157:2542–2549

    Article  CAS  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, Copper, and Zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

    Article  CAS  Google Scholar 

  • Huang SS, Liao QL, Hua M et al (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu province, China. Chemosphere 67:2148–2155

    Article  CAS  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140

    Article  CAS  Google Scholar 

  • Jamali MK, Kazi TG, Arain MB, Afridi HI, Jalbani N, Memon AR (2007) Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. J Agron Crop Sci 193:218–228

    Article  CAS  Google Scholar 

  • Khan MS et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kiritani K (1979) Pest management in rice. Annu Rev Entomol 24:279–312

    Article  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157(1–2):1–14

    Article  Google Scholar 

  • Krishnamurti GSR (2000) Speciation of heavy metals: an approach for remediation of contaminated soils. In: Wise DL et al (eds) In remediation engineering of contaminated soils. Marcel Dekker Inc, New York, pp 693–714

    Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17(1):6–15

    Article  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24(5):625–645

    Article  CAS  Google Scholar 

  • Liu XM, Wu JJ, Xu JM (2006) Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environ Pollut 141:257–264

    Article  CAS  Google Scholar 

  • Lu RK, Shi ZY, Xiong LM (1992) Cadmium contents of rock phosphates and phosphate fertilizers of China and their effects on ecological environment. Acta Pedol Sin 29:150–157

    Google Scholar 

  • Luo L, Ma Y, Zhang S, Wei D, Zhu YG (2009a) Inventory of trace element inputs to agricultural soils in China. J Environ Manag 90:2524–2530

    Article  CAS  Google Scholar 

  • Luo Y, Wu L, Liu L, Han C, Li Z (2009b) Heavy metal contamination and remediation in Asian agricultural land. National Institute for Agro-Environmental Science (NIAES), Tsukuba

    Google Scholar 

  • Luo YM, Teng Y (2006) Status of soil pollution-caused degradation and countermeasures in China (in Chinese). Soil 38:505–508

    Google Scholar 

  • Mani D, Sharma B, Kumar C (2007) Phytoaccumulation, interaction, toxicity and remediation of cadmium from helianthus annuus L. (sunflower). Bull Environ Contam Toxicol 79:71–79

    Article  CAS  Google Scholar 

  • Master ER, Lai VWM, Kuipers B, Cullen WR, Mohn WW (2001) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36:100–103

    Article  Google Scholar 

  • McGrath SP (1994) Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In: Ross SM (ed) Toxic metals in soil-plant systems. John Wiley, Chichester, pp 242–274

    Google Scholar 

  • Mayer AL (2001) The effect of limited options and policy interactions on water storage policy in South Florida. J Environ Manag 63(1):87–102

    Article  CAS  Google Scholar 

  • Mishra SN, Mitra S, Rangan L, Dutta S, Singh P (2012) Exploration of ‘hot-spots’ of methane and nitrous oxide emission from the agriculture fields of Assam, India. Agric Food Sec 1:16. https://doi.org/10.1186/2048-7010-1-16

    Article  Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaa BA, Bustamante CD, Boyk AR, Purugganan D (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci 108:20

    Article  Google Scholar 

  • Mollea C, Bosco F, Ruggeri B (2005) Fungal biodegradation of naphthalene: microcosms studies. Chemosphere 60(5):636–643

    Article  CAS  Google Scholar 

  • National Bureau of Statistics of China (NBSC) (2006) China statistical yearbook 2005. China Statistics Press, Beijing

    Google Scholar 

  • Norra S, Berner ZA, Agarwala P, Wagner F, Chandrasekharam D, Stuoben D (2005) Impact of irrigation with As rich groundwater on soil and crops: a geochemical case study in West Bengal Delta plain, India. Appl Geochem 20:1890–1906

    Article  CAS  Google Scholar 

  • Novotný ÄŒ, Erbanová P, Å aÅ¡ek V, Kubátová A, Cajthaml T, Lang E, Krahl J, Zadražil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10(3):159–168

    Article  Google Scholar 

  • Pal A, Paul AK (2004) Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol Res 2004(159):347–354

    Article  Google Scholar 

  • Pandey AK, Pandey SD, Misra V (2000) Stability constants of metal-humic acid complexes and its role in environmental detoxification. Ecotoxicol Environ Saf 47:195–200

    Article  CAS  Google Scholar 

  • Patel KS, Shrivas K, Brandt R, Jakubowski N, Corns W, Hoffmann P (2005) Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health 27:131–145

    Article  CAS  Google Scholar 

  • Payne RB, Fagervold SK, May HD, Sowers KR (2013) Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria. Environ Sci Technol 47:3807–3815

    Article  CAS  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51(1):71–78

    Article  CAS  Google Scholar 

  • Rama R, Sigoillot JC, Chaplain V, Asther M, Jolivalt C, Mougin C (2001) Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycycl Aromat Comp 18(4):397–414

    Article  CAS  Google Scholar 

  • Ramachandran V, Dsouza TJ (1999) Adsorption of cadmium by Indian soils. Water Air Soil Pollut 111:225–234

    Article  CAS  Google Scholar 

  • Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In: Biodegradation and persistence. Springer, Berlin, pp 1–161

    Google Scholar 

  • Riz de Camargue, Silo de Tourtoulen, Rizblanc de Camargue, Riz et céréales de Camargue. Riz-camargue.com. Accessed 25 Apr 2013

    Google Scholar 

  • Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA (2018) Advances and perspective in bioremediation of polychlorinated biphenyl–contaminated soils. Environ Sci Pollut Res:1–21

    Google Scholar 

  • Sinha S, Gupta AK, Bhatt K, Pandey K, Rai UN, Singh KP (2006) Distribution of metals in the edible plants grown at Jajman, Kanpur (Indian) receiving treated tannery wastewater: relation with physico-chemical properties of the soil. Environ Monit Assess 115:1–22

    Article  CAS  Google Scholar 

  • State Environmental Protection Administration of China (SEPAC) (2006) China environmental yearbook 2005. China Environmental Sciences Press, Beijing

    Google Scholar 

  • Streets DG, Hao JM, Wu Y, Jiang JK, Chan M, Tian HZ, Feng XB (2005) Anthropogenic mercury emissions in China. Atmos Environ 39:7789–7806

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  Google Scholar 

  • Wang C, Shen Z, Li X, Luo C, Chen Y, Yang H (2004) Heavy metal contamination of agricultural soils and stream sediments near a copper mine in Tongling, People’s Republic of China. Bull Environ Contam Toxicol 73:862–869

    Article  CAS  Google Scholar 

  • Wang G, Koopmans GF, Song J, Temminghoff EJ, Luo Y, Zhao Q, Japenga J (2007) Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur. Environ Geochem Health 29(3):221–235

    Article  CAS  Google Scholar 

  • Wei CY, Chen TB (2001) Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecol Sin 21:1196–1203

    Google Scholar 

  • Williams PN, Lei M et al (2009) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice- Hunan, China. Environ Sci Technol 43:637–642

    Article  CAS  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44(1):122–128

    Article  Google Scholar 

  • Wu ZX (2005) The amounts of pesticide required will increase in 2005. China Chemical Industry News

    Google Scholar 

  • Xiong X, Allinson G, Stagnitti F, Peterson J (2003) Metal contamination of soils in the Shenyang Zhangshi irrigation area. Bull Environ Contam Toxicol 70:935–941

    Article  CAS  Google Scholar 

  • Xu Y, Zhou NY (2017) Microbial remediation of aromatics-contaminated soil. Front Environ Sci Eng 11(2):1

    Article  CAS  Google Scholar 

  • Zarcinas BA, Pongsakul P, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in south-east Asia. 1. Peninsular Malaysia. Environ Geochem Health 26:343–357

    Article  CAS  Google Scholar 

  • Zelles L, Bai QY, Ma RX, Rackwitz R, Winter K, Besse F (1994) Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agricultural-managed soils. Soil Biol Biochem 26:439–446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naseer Ali Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, N.A., Kaleem, I., Shabbir, A., Moneeba, S., Khattak, A.H. (2018). Bioremediation of Contaminated Paddy Soil. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_16

Download citation

Publish with us

Policies and ethics