Skip to main content

Major Pollutants of Contaminated Paddy Soils

  • Chapter
  • First Online:
  • 578 Accesses

Part of the book series: Soil Biology ((SOILBIOL,volume 53))

Abstract

Pollution of soil is a burning environmental issue worldwide. With an increase in the population, the demand for food has also increased drastically, followed by adapting of such agricultural practices that although enhances the production however pollutes the surface soil as well (Bakircioglu et al. 2011; Fernandez-Ondono et al. 2017; Sungur et al. Soil Sediment Contam 24:1–15, 2015). Pollutants have the ability to be transferred into different compartments of ecosystem therefore causing stern environmental as well as health problems (Guillen et al. 2012; Hu et al. 2013; Qishlaqi et al. J Hazard Mater 172:374–384, 2009).

Plants are indicative of deposition from air, providing evidence of long-range transport (de Wit et al. 2006). Certain plants have a high lipid fraction to accumulate lipophilic compounds from air precipitates and therefore play an important role in the global cycling of contaminants (Lead et al. 1996). Rice is the major source of food for as much as 60% of the world’s population (Kiritani K. Annu Rev Entomol 24:279–312, 1979). Paddy fields cover approximately 155 million ha and are the largest man-made wetlands on Earth, dominating the landscape in south-eastern China (Koegel-Knabner et al. 2010). The quality and safety of these paddy soils are directly linked to health and environmental status of local and international community. Reckless industrial effluent discharge containing metals/metalloids or unchecked/uncontrolled use of insecticides and pesticides to control pest population and enhance crop yield is ultimately going to pollute the soil and crop as well. This in turn will travel up the food chain where they possibly may bioaccumulate and biomagnify. These pollutants are responsible for causing numerous health concerns, at times leading to fatal acute and chronic diseases. Hence, maintaining the quality of our agricultural land is of supreme importance if we want to feed our ever-growing population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An encyclopedia of chemicals, drugs, and biologicals. (2006). Merck & Co., Inc., Whitehouse Station, N.J., USA. p.808.

  2. 2.

    Hexachlorobenzene – inhalable fraction. Documentation of proposed values of occupational exposure limits (OELs). (2016). Princ Methods Assess Work Environ. 3 (89): 67–102.

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological profile for chromium. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422

    Article  CAS  Google Scholar 

  • Bailey RE (2001) Global hexachlorobenzene emissions. Chemosphere 43:167–182

    Article  CAS  Google Scholar 

  • Botias C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, Goulson D (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ Sci Technol 49:12731–12740

    Article  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (CDCP) (2001) Managing elevated blood lead levels among young children. Recommendations from the Advisory Committee on Childhood Lead Poisoning Prevention, Atlanta

    Google Scholar 

  • Choi SD, Baek SY, Chang YS, Wania F, Ikonomou MG, Yoon YJ, Park BK, Hong S (2008) Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: implications for long-range transport and local pollution. Environ Sci Technol 42:7125–7131

    Article  CAS  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  Google Scholar 

  • Corsolini S, Kannan K, Imagawa T, Focardi S, Giesy JP (2002) Polychloronaphthalenes and other dioxin-like compounds in Arctic and Antarctic marine food webs. Environ Sci Technol 36:3490–3496

    Article  CAS  Google Scholar 

  • de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624

    Article  Google Scholar 

  • Ding C, Ni HG, Zeng H (2013) Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China. Sci Total Environ 443:857–863

    Article  CAS  Google Scholar 

  • Eremina N, Paschke A, Mazlova EA, Schüürmann G (2016) Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia. Environ Pollut 210:409–418

    Article  CAS  Google Scholar 

  • FAOSTAT (2012) FAO statistical databases. Food and Agriculture Organization (FAO) of the United Nations, Rome. www.faostat.fao.org

  • Farfel MR, Chisolm JJ (1991) An evaluation of experimental practices for abatement of residential lead-based paint: report on a pilot project. Environ Res 55:199–212

    Article  CAS  Google Scholar 

  • Flora SJS, Flora GJS, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead: chemistry, analytical aspects, environmental impacts and health effects. Elsevier, Amsterdam, pp 158–228

    Chapter  Google Scholar 

  • Goutte A, Chevreuil M, Alliot F, Chastel O, Cherel Y, Eléaume M, Massé G (2013) Persistent organic pollutants in benthic and pelagic organisms off Adélie land, Antarctica. Mar Pollut Bull 77:82–89

    Article  CAS  Google Scholar 

  • Goyer RA (2001) Toxic effects of metals. In: Klaassen CD (ed) Cassarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York

    Google Scholar 

  • Hale RC, La Guardia MJ, Harvey E, Mainor TM (2002) Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 46:729–735

    Article  CAS  Google Scholar 

  • Hamelink JL, Landrum PF, Harold BL, William BH (eds) (1994) Bioavailability: physical, chemical, and biological interactions. CRC, Boca Raton

    Google Scholar 

  • Hang XS, Wang H, Zhou J, Ma C, Du C, Chen X (2009) Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River delta. Environ Pollut 157(8–9):2542–2549

    Article  CAS  Google Scholar 

  • Haynes D, Müller J, Carter S (2000) Pesticide and herbicide residues in sediments and seagrasses from the great barrier reef world heritage area and Queensland coast. Mar Pollut Bull 41:279–287

    Article  CAS  Google Scholar 

  • Jackson DR, Roulier MH, Grotta HM, Rust SW, Warner JS (1985) Leaching potential of 2,3,7,8-TCDD in contaminated soils. In: Proceedings of the EPA HWERL 11th annual research symposium, Cincinnati, OH, pp 153–168

    Google Scholar 

  • Jeschke P, Nauen R, Schindler M, Elbert A (2011) A overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

    Article  CAS  Google Scholar 

  • Jones K (2005) Hexachlorobenzene-sources, environmental fate and risk characterization. Euro Chlor Sci Dossier 8:1–120

    Google Scholar 

  • Kabata-Pendia A 3rd (ed) (2001) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Kapila S, Yanders AF, Orazio C, Meadows J, Puri RK, Cerlesi S (1988) Field and laboratory studies on the movement and fate of tetrachlorodibenzo-p-dioxins in soil. Chemosphere 18:1297–1304

    Article  Google Scholar 

  • Kaul B, Sandhu RS, Depratt C, Reyes F (1999) Follow-up screening of lead-poisoned children near an auto battery recycling plant, Haina, Dominican Republic. Environ Health Perspect 107(11):917–920

    Article  CAS  Google Scholar 

  • Kelly BC, Ikonomou MG, Blair JD, Gobas FAPC (2008) Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web. Sci Total Environ 401:60–72

    Article  CAS  Google Scholar 

  • Kiguchi O, Kobayashi T, Wada Y, Saitoh K, Ogawa N (2007) Polychlorinated dibenzo-p-dioxins and dibenzofurans in paddy soils and river sediments in Akita, Japan. Chemosphere 67:57–573

    Article  Google Scholar 

  • Kiritani K (1979) Pest management in rice. Annu Rev Entomol 24:279–312

    Article  Google Scholar 

  • Labunska I, Harrad H, Wang MJ, Santillo D, Johnston P (2014) Human dietary exposure to PBDEs around e-waste recycling sites in eastern China. Environ Sci Technol 40:5555–5564

    Article  Google Scholar 

  • Lanphear BP, Matte TD, Rogers J (1998) The contribution of lead-contaminated house dust and residential soil to children's blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ Res 79:51–68

    Article  CAS  Google Scholar 

  • Li J, Zhang G, Qi S, Li X, Peng X (2006) Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China. Sci Total Environ 372(1):215–224

    Article  CAS  Google Scholar 

  • Ma B, Wang J, Xu M, He Y, Wang H, Wu L, Xu J (2012) Evaluation of dissipation gradients of polycyclic aromatic hydrocarbons in rice rhizosphere utilizing a sequential extraction procedure. Environ Pollut 162:413–421

    Article  CAS  Google Scholar 

  • Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303

    Article  CAS  Google Scholar 

  • National Research Council. Arsenic in Drinking Water (2001) Update. http://www.nap.edu/books/0309076293/html/ [PubMed]

  • Negoita TG, Covaci A, Gheorghe A, Schepens P (2003) Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast. J Environ Monit 5:281–286

    Article  CAS  Google Scholar 

  • Nethery E, Wheeler AJ, Fisher M, Sjodin A, Li Z, Romanoff LC (2012) Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women. J Expo Sci Environ Epidemiol 22:70–81

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) Influential paper on the chemistry of metal ions that had a major impact on studies of metal toxicity

    Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Occupational Safety and Health Administration (OSHA) (2006) Occupational exposure to hexavalent chromium, Final rule, vol 71. Federal Register, Washington, pp 10099–10385

    Google Scholar 

  • Oliver D, Kkana R, Quintana B (2005) Sorption of pesticides in tropical and temperate solids from Australia and the Philippines. J Agric Food Chem 53:6420–6425

    Article  CAS  Google Scholar 

  • Olson JR, Bittner WE (1983) Comparative metabolism and elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicologist 3:103

    Google Scholar 

  • Ong CN, Phoon WO, Law HY, Tye CY, Lim HH (1985) Concentrations of lead in maternal blood, cord blood, and breast milk. Arch Dis Child 60:756–759

    Article  CAS  Google Scholar 

  • Oyeyiola AO, Olayinka KO, Alo BL (2011) Comparison of three sequential extraction protocols for the fractionation of potentially toxic metals in coastal sediments. Environ Monit Assess 172:319–327

    Article  CAS  Google Scholar 

  • Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Prod Sci 12:3–8

    Article  Google Scholar 

  • Peng C, Chen W, Liao X, Wang M, Ouyang Z, Jiao W, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut 159:802–808

    Article  CAS  Google Scholar 

  • Perera FP (1997) Environment and cancer: who are susceptible? Science 278:1068–1073

    Article  CAS  Google Scholar 

  • Peterson RE, Seefeld MD, Christian BJ, Potter CL, Kelling CK, Keesey RE (1984) The wasting syndrome in 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicity: basic features and their interpretation. In: Poland A, Kimbrough RD (eds) Biological mechanisms of dioxin action. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 291–308

    Google Scholar 

  • Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res 443(1–2):139–147

    Article  CAS  Google Scholar 

  • Poiger H, Schlatter C (1980) Influence of solvents and adsorbents on dermal and intestinal absorption of TCDD. Food Cosmet Toxicol 18:477–481

    Article  CAS  Google Scholar 

  • Qishlaqi A, Moore F, Forghani G (2009) Characterization of metal pollution in soils under two land use patterns in the Angouran region, NW Iran; a study based on multivariate data analysis. J Hazard Mater 172:374–384

    Article  CAS  Google Scholar 

  • Reddy MV, Satpathy D, Dhiviya KS (2013) Assessment of heavy metals (cd and Pb) and micronutrients (cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet. Environ Monit Assess 185:6693–6704

    Article  CAS  Google Scholar 

  • Robin J, Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MAE, Fernie K, Toms LML, Takigami H (2014) Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. Environ Int 65:147–158

    Article  Google Scholar 

  • Rochman CM, Manzano C, Hentschel BT, Simonich SLM, Hoh E (2013) Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environ Sci Technol 47:13976–13984

    Article  CAS  Google Scholar 

  • Sanderson K (2011) Pollutants’ role in birth defects becomes clearer. Nature. https://www.nature.com/news/2011/110718/full/news.2011.423.html

  • Skrbic B, Durisic-Mladenovic N (2007) Principal component analysis for soil contamination with organochlorine compounds. Chemosphere 68:2144–2152

    Article  CAS  Google Scholar 

  • Stone R (2009) Confronting a toxic blowback from the electronics trade. Science 325:1055

    Article  CAS  Google Scholar 

  • Su YH, Zhu YG (2006) Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Environ Pollut 139:32–39

    Article  CAS  Google Scholar 

  • Sungur A, Soylak M, Yilmaz E, Yilmaz S, Ozcan H (2015) Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions. Soil Sediment Contam 24:1–15

    Article  CAS  Google Scholar 

  • Tao S, Jiao XC, Chen SH, Liu WX, Coveney RM Jr, Zhu LZ, Luo YM (2006) Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Environ Pollut 140(3):406–415

    Article  CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvilli N, Sutton D (2003) Environmental exposures to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  CAS  Google Scholar 

  • Teng M, Zhang H, Fu Q, Lu X, Chen J, Wei F (2013) Irrigation-induced pollution of organochlorine pesticides and polychlorinated biphenyls in paddy field ecosystem of Liaohe River plain, China. Chin Sci Bull 58:1751–1759

    Article  CAS  Google Scholar 

  • Umbreit TH, Hess EJ, Gallo MA (1986) Bioavailability of dioxin in soil from a 2,4,5-T manufacturing site. Science 232:497–499

    Article  CAS  Google Scholar 

  • US EPA (Environmental Protection Agency) (1997) Mercury study report to congress

    Google Scholar 

  • Valle MD, Jurado E, Dachs J, Sweetman AJ, Jones KC (2005) The maximum reservoir capacity of soils for persistent organic pollutants: implications for global cycling. Environ Pollut 134(1):153–164

    Article  Google Scholar 

  • Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424

    Google Scholar 

  • Voorspoels S, Covaci A, Schepens P (2003) Polybrominated diphenyl ethers in marine species from the Belgian North Sea and the western Scheldt estuary: levels, profiles, and distribution. Environ Sci Technol 37:4348–4357

    Article  CAS  Google Scholar 

  • Wang F, Bian YR, Jiang X, Gao HJ, Yu GF, Deng JC (2006) Residual characteristics of organochlorine pesticides in Lou soils with different fertilization modes. Pedosphere 16:161–168

    Article  Google Scholar 

  • Wang F, Jiang X, Bian YR, Yao FX, Gao HJ, Yu GF, Munch JC, Schroll R (2007) Organochlorine pesticides in soils under different land usage in the Taihu Lake region, China. J Environ Sci (China) 19:584–590

    Article  CAS  Google Scholar 

  • Wang Y, Li Q, Wang S, Wang Y, Luo C, Li J, Zhang G (2015a) Seasonal and diurnal variations of atmospheric PAHs and OCPs in a suburban paddy field, South China: impacts of meteorological parameters and sources. Atmos Environ 112:208–215

    Article  Google Scholar 

  • Xu RC, Wang QQ, Zheng W, Liu HJ, Liu WP (2000) Study on the adsorption of imidacloprid in soils and the interaction mechanism. Acta Sci Circumst 20:198–201

    CAS  Google Scholar 

  • Yogui GT, Sericano JL (2008) Polybrominated diphenyl ether flame retardants in lichens and mosses from king George Island, maritime Antarctica. Chemosphere 73:1589–1593

    Article  CAS  Google Scholar 

  • Young AL (1983) Long-term studies on the persistence and movement of TCDD in a natural ecosystem. In: Tucker A, Young A, Gray AP (eds) Human and environment risks of chlorinated dioxins and related compounds. Plenum Press, New York, pp 173–190

    Chapter  Google Scholar 

  • Zhang H, Luo Y, Li Q (2009) Burden and depth distribution of organochlorine pesticides in the soil profiles of Yangtze River Delta region, China: implication for sources and vertical transportation. Geoderma 153:69–75

    Article  CAS  Google Scholar 

  • K. Zhang, J.L. Schnoor, E.Y. Zeng. (2012). E-waste recycling: where does it go from here? Environ. Sci. Technol.,(46):10861-10867.

    Article  CAS  Google Scholar 

  • Zhang Y, Luo XJ, Mo L, Wu J, Mai B, Peng YH (2015a) Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China. Chemosphere 137:25–32

    Article  CAS  Google Scholar 

  • Zhang P, Mu W, Liu F, He M, Luo M (2015b) Adsorption and leaching of thiamethoxam in soil. Environ Chem 34:705–711

    Google Scholar 

  • Zhang H, Lu X, Zhang Y, Ma X, Wang S, Ni Y, Chen J (2016) Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China. Environ Pollut 216:893–901

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunbal Siddique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddique, S. (2018). Major Pollutants of Contaminated Paddy Soils. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_1

Download citation

Publish with us

Policies and ethics