Skip to main content

iEnsemble2: Committee Machine Model-Based on Heuristically-Accelerated Multiagent Reinforcement Learning

  • Conference paper
  • First Online:
Complex, Intelligent, and Software Intensive Systems (CISIS 2018)

Abstract

Machine committees, as the name implies, are the union of more than one machine of learning in generating a solution to a given problem. During this process, several decisions must be taken to seek the generalization of the model and also to have the coordination to find a final solution at least satisfactory to the problem. At this point, agent theory plays a fundamental role, as it allows the agent’s autonomous decision-making, based on their experiences, as well as providing mechanisms to scale and distribute processing. Reinforcement learning is based on the existence of an external critic to the environment, which evaluates the action defined, but without explicitly indicating the correct action to be taken, in this way, allowing the training of agents in a gradual way and assisting in learning. This learning process can be accelerated by making use of heuristics on the problem domain. In this way, this article proposes a machine committee model based on multiagents system and learning by multi-person reinforcement accelerated by heuristics, describing the experiments performed and the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aranibar, D.B.: Aprendizado por Reforço com Valores de Influência em SMA. Tese de Doutorado, Natal. Universidade Federal do Rio Grande do Norte (2009)

    Google Scholar 

  2. Bianchi, R., Martins, M., Ribeiro, C., Costa, A.: Heuristically-accelerated multiagent reinforcement learning. IEEE Trans. Cybern. 44(2), 252–265 (2014)

    Article  Google Scholar 

  3. Blaser, R., Fryzlewicz, P.: Random rotation ensembles. J. Mach. Learn. Res. 17, 1–26 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 38(2), 156–172 (2008)

    Article  Google Scholar 

  5. Cervantes, L.J., Lee, S.: Agent-based approach to distributed ensemble learning. Agent and multi-agent systems: technologies and applications. In: First KES International Symposium, pp. 805–814 (2007)

    Google Scholar 

  6. Hansen, L., Salomon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 121, 993–1001 (1990)

    Article  Google Scholar 

  7. He, H., et al.: Opponent modeling in deep reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, vol. 48, pp. 1804–1813 (2016)

    Google Scholar 

  8. Helmy, T., et al.: Adaptive ensemble and hybrid models for classification of bioinformatics datasets. Trans. Fuzzy Neural Netw. Bioinform. 3, 20–29 (2012)

    Google Scholar 

  9. Hsu, K.-W.: A theoretical analysis of why hybrid ensembles works. Comput. Intell. Neurosci. 2017, 1–12 (2017)

    Article  Google Scholar 

  10. Lima, C.A.M.: Comitê de Máquinas: Uma abordagem Unificada Empregando Máquinas de Vetores-Suporte. Tese. Campinas: Universidade Estadual de Campinas. Programa de Pós-Graduação em Engenharia Elétrica e de Computação (2004)

    Google Scholar 

  11. Lima, M.D.C., Nassar, S.M., de Freitas Filho, P.J.: Simulation of oil drilling time series using Monte Carlo and Bayesian Networks. In: 2015 Winter Simulation Conference (WSC), 2015, Huntington Beach, CA, pp. 1195–1205. WSC Abstracts (2015)

    Google Scholar 

  12. Lima Junior, F.C.: Algoritmo Q-Learning como Estratégia de Exploração/Explotação para as metaheurísticas GRASP e AG. Tese. Natal. Universidade Federal do Rio Grande do Norte (2009)

    Google Scholar 

  13. Mazzutti, T., Roisenberg, M., de Freitas Filho, P.J.: INFGMN—incremental neuro-fuzzy Gaussian mixture network. Expert Syst. Appl. 89, 160–178 (2017)

    Article  Google Scholar 

  14. Mendoza, L.A.F: Coordenação Inteligente para Multiagentes baseados em Modelo Neuro-Fuzzy Hierárquicos com Aprendizado por Reforço. Tese. Pontífica Universidade Católica. Programa de Pós-Graduação Engenharia Elétrica, Rio de Janeiro (2013)

    Google Scholar 

  15. Nilsson, N.J.: Learning Machines. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  16. Oliveira, R.T.A., et al.: Copulas-based ensemble of artificial neural networks for forecasting real world time series. In: IEEE World Congress on Computational Intelligence – WCCI (2016)

    Google Scholar 

  17. Oliveira, R.T.A., et al.: Copulas-based time series combined forecasters. J. Inf. Sci. Int. J. 376, 110–124 (2017)

    Google Scholar 

  18. Perrone, M.P., Cooper, L.N.: When networks disagree: ensemble methods for hybrid neural networks, pp. 126--142. Chapman and Hall (1993)

    Google Scholar 

  19. Ravishankar, N.R., Vijayakumar, M.V.: Reinforcement learning algorithms: survey and classification. Indian J. Sci. Technol. 10, 1395–1401 (2017)

    Article  Google Scholar 

  20. Russell, S.J., Norvig, P.: Inteligência Artificial: A Modern Approach. Prentice Hall, Upper Saddle River (2010)

    MATH  Google Scholar 

  21. Silva, T.C.: Aprendizado de máquina em redes complexas: modelagem, análise e aplicações. Tese. Universidade de São Paulo–USP. Instituto de Ciências Matemáticas e de Computação, São Carlos (2012)

    Google Scholar 

  22. Soares, S.G.: Ensemble Learning Methodologies for Soft Sensor Development in Industrial Processes. Tese. Universidade de Coimbra. Departamento de Engenharia Electrotécnica e de Computadores, Coimbra (2015)

    Google Scholar 

  23. Uber Junior, A., de Freitas Filho, P.J., Silveira, R.A.: E-HIPS: an extention of the framework HIPS for stagger of distributed process in production systems based on multiagent systems and memetic algorithms, 1st edn. LNCS, vol. 9413, pp. 413–430. Springer International Publishing (2015)

    Google Scholar 

  24. Uber Junior, A., de Freitas Filho, P.J., Silveira, R.A., Costa e Lima, M.D., Reitz, R.W.: iEnsemble: a framework for committee machine based on multiagent systems with reinforcement learning, 1st edn. LNCS, vol. 10062, pp. 59–70. Springer International Publishing (2017)

    Chapter  Google Scholar 

  25. UCI: Machine Learning Repository. Disponível em: https://archive.ics.uci.edu/ml/index.php. Acesso em 12 Jan 2018

  26. Villar, S.O.: Ensemble case-based learning for multi-agent systems. Doctoral thesis, Universitat Autonoma de Barcelona (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Uber Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uber Junior, A., de Freitas Filho, P.J., Silveira, R.A., Mueloschat, J. (2019). iEnsemble2: Committee Machine Model-Based on Heuristically-Accelerated Multiagent Reinforcement Learning. In: Barolli, L., Javaid, N., Ikeda, M., Takizawa, M. (eds) Complex, Intelligent, and Software Intensive Systems. CISIS 2018. Advances in Intelligent Systems and Computing, vol 772. Springer, Cham. https://doi.org/10.1007/978-3-319-93659-8_32

Download citation

Publish with us

Policies and ethics