Skip to main content

Graph Classification with Mapping Distance Graph Kernels

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods (ICPRAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10857))

Abstract

Graph mining is of great interest because knowledge discovery from structured data can be applied to real-world datasets. Recent improvements in system throughput have led to the need for the analysis of a large number of graphs using methods such as graph classification, the objective of which is to classify graphs of similar structures into the same class. Existing methods for representing graphs can result in difficulties such as the loss of structural information, which can be overcome using specifically designed graph kernels. In this paper, we propose two novel graph kernels, mapping distance kernel with stars (MDKS) and mapping distance kernel with vectors (MDKV), to classify labeled graphs more accurately than existing methods. The MDKS is based on the graph edit distance using star structures, and the MDKV is based on the graph edit distance using the linear sum assignment problem and graph relabeling. Because MDKS uses only small local structures that consist of adjacent vertices of each vertex in graphs, it is not substantially superior to conventional graph kernels. However, the MDKV uses local structures that consist of vertices that are reachable within a small number of steps from each vertex in graphs and, unlike existing methods, do not require isomorphism matching. In addition, we investigate a framework for computing the approximate graph edit distance between two graphs using the linear sum assignment problem (LSAP), because the proposed graph kernels are related to methods for computing the graph edit distance using LSAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  2. 2.

    The figures and tables showing experimental results are the same as ones in the conference version of this paper [14].

References

  1. Bach, F.R.: Graph kernels between point clouds. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 25–32 (2008)

    Google Scholar 

  2. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of IEEE International Conference on Data Mining (ICDM), pp. 74–81 (2005)

    Google Scholar 

  3. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_19

    Chapter  Google Scholar 

  4. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines (2001). http://www.csie.ntu.edu.tw/cjlin/libsvm

  5. Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In: Proceedings of International Conference on Machine Learning (ICML), pp. 255–262 (2010)

    Google Scholar 

  6. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34, 786–797 (1991)

    Article  Google Scholar 

  7. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree edit distance. ACM Trans. Algorithm 6(1), 2:1–2:19 (2009)

    Article  MathSciNet  Google Scholar 

  8. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_11

    Chapter  MATH  Google Scholar 

  9. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3_8

    Chapter  Google Scholar 

  10. Helma, C., Kramer, S.: A survey of the predictive toxicology challenge. Bioinformatics 19(10), 1179–1182 (2003)

    Article  Google Scholar 

  11. Hido, S., Kashima, H.: A linear-time graph kernel. In: Proceedings of the International Conference on Data Mining (ICDM), pp. 179–188 (2009)

    Google Scholar 

  12. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 321–328 (2003)

    Google Scholar 

  13. Kataoka, T., Inokuchi, A.: Hadamard code graph kernels for classifying graphs. In: Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 24–32 (2016)

    Google Scholar 

  14. Kataoka, T., Shiotsuki, E., Inokuchi, A.: Mapping distance graph kernels using bipartite matching. In: Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 61–70 (2017)

    Google Scholar 

  15. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25(1), 53–76 (1957)

    Article  MathSciNet  Google Scholar 

  16. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  17. Haussler, D.: Convolution kernels on discrete structures. Technical report, UCSC-CRL-99-10, University of California at Santa Cruz (1999)

    Google Scholar 

  18. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, (KDD), pp. 158–167 (2004)

    Google Scholar 

  19. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5_2

    Chapter  Google Scholar 

  20. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  21. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, Singapore (2007)

    Book  Google Scholar 

  22. Mahé, P., Vert, J.-P.: Graph kernels based on tree patterns for molecules. Mach. Learn. 75(1), 3–35 (2009)

    Article  Google Scholar 

  23. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

    Article  Google Scholar 

  24. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance. ACVPR. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27252-8

    Book  MATH  Google Scholar 

  25. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schomburg, D.: BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 32D, 431–433 (2004)

    Article  Google Scholar 

  26. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt, K.M.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 488–495 (2009)

    Google Scholar 

  27. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. (JMLR) 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. Int. Conf. Very Large Database (VLDB) 2(1), 25–36 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Inokuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kataoka, T., Shiotsuki, E., Inokuchi, A. (2018). Graph Classification with Mapping Distance Graph Kernels. In: De Marsico, M., di Baja, G., Fred, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2017. Lecture Notes in Computer Science(), vol 10857. Springer, Cham. https://doi.org/10.1007/978-3-319-93647-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93647-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93646-8

  • Online ISBN: 978-3-319-93647-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics